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Abstract

Let A be a (normally) hyperbolic compact invariant manifold of an analytic diffeomorphism

f of an analytic manifold M: We assume that the stable and unstable manifold of A intersect

transversally (in an admissible way), the dynamics on A is ergodic and the modulus of the

eigenvalues associated to the stable and unstable manifold, respectively, satisfy a non-

resonance condition. In the case where A is a point or a torus, we prove that the discrete

dynamical system associated to f does not admit an analytic first integral. The proof is based

on a triviality lemma, which is of combinatorial nature, and a geometrical lemma. The same

techniques, allow us to prove analytic non-integrability of Hamiltonian systems having Arnold

diffusion. In particular, using results of Xia, we prove analytic non-integrability of the elliptic

restricted three-body problem, as well as the planar three-body problem.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The aim of this paper is to discuss the following conjecture [2]

Conjecture 1.1. Let f be an analytic diffeomorphism of an analytic manifold M, and A

be a compact hyperbolic invariant set for f. We assume that

(i) the stable and unstable manifold of A intersect transversally,
(ii) f is ergodic on A,
(iii) the eigenvalues of f associated to the stable (resp. unstable) manifold satisfy a non-

resonance condition.
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Then the discrete dynamical system associated to f does not admit an analytic first

integral, except constant.

In this paper, we prove this conjecture for a point or a torus.
The proof is based on two results. The first one, called triviality lemma, states that

under assumption (ii) and (iii), an analytic function, which is zero on a generic orbit
of the stable (or unstable) manifold, is identically zero. Then, conditions (ii) and (iii)
are sufficient conditions under which the stable and unstable manifold of a point, or
a torus, are a key-set for analytic functions.

The second result, called geometrical lemma, states that a C1 function, constant on
the stable and unstable manifold has a differential which is zero at all point of
transverse intersection.

The same techniques allow us to prove that a Hamiltonian system H possessing a
partially hyperbolic torus satisfying assumption (i)–(iii) does not admit an analytic
first integral independent of H: This result implies, via Xia study of Arnold diffusion
in the three-body problem, non-existence of analytic first integrals for the elliptic
restricted three-body problem, as well as the planar three-body problem, extending a
well-known result of Poincaré.

2. Hyperbolic fixed point

2.1. On a theorem of Moser

Let f be an analytic diffeomorphism of Rn: We say that f possesses a transverse

hyperbolic homoclinic structure if f admits an invariant hyperbolic fixed point p;
whose stable and unstable manifolds, denoted W�ðpÞ and WþðpÞ; intersect
transversally.

In 1973, Moser [5] proves, for n ¼ 2; the following theorem.

Theorem 2.1. Let f be an analytic diffeomorphism of R2; possessing a transverse

hyperbolic homoclinic structure, then the dynamical system associated to f does not

admit an analytic first integral.

His proof is based on the Birkhoff–Smale theorem. Precisely, he uses the existence
of a hyperbolic invariant set in the neighbourhood of the homoclinic orbit, on which
the dynamics is complicated. In particular, there exists a dense orbit. This set is then
a key-set for analytic functions.

The generalization of this result in higher dimension is difficult (see [3]) if one
wants to follow Moser’s scheme of proof. This is due in particular, to the fact that
key’s sets of analytic functions with several variables are complicated to characterize.

2.2. Main result

Let f be a diffeomorphism of Rn; possessing a transverse hyperbolic homoclinic
structure.
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We call local analytic first integral for f ; a C1 first integral, such that its restriction

to an open neighbourhood U of W�ðpÞ,WþðpÞ is analytic.

Remark 2.1. This definition has been suggested by R. Roussarie in order to cover
some problems concerning first integrals of polynomial vector fields.

We say that the local analytic first integral is Co-trivial, if its restriction to U is
constant.

Theorem 2.2. Let f be an analytic diffeomorphism of Rn such that p is a hyperbolic

fixed point for f. We assume that

(i) W�ðpÞ and WþðpÞ intersect transversally in an admissible homoclinic point h,
(ii) the eigenvalues of Df ðpÞ associated to W�ðpÞ (resp. WþðpÞ), denoted l�i ;

i ¼ 1;y; n� and lþi ; i ¼ 1;y; nþ; respectively, satisfy the following non-

resonance condition:

jðlsÞnja1 ð1Þ

for s ¼ 7; where nAZns
\ f0g; n ¼ ðn1;y; nnsÞ; ls ¼ ðls1 ;y; lsnsÞ; ðlsÞn ¼

ðls1Þ
n1
yðlsnsÞ

nns :

Then, the dynamical system defined by f does not possess an analytic first integral

which is not Co-trivial.

The notion of admissible homoclinic point will be precised during the proof of the
theorem (see Definition 2.1).

For diffeomorphisms of R2; the non-resonance condition is empty, as well as the
condition on the homoclinic point to be admissible. Then, if we look for an analytic
first integral defined on the whole space, the theorem implies that it is trivial. As a
consequence, the theorem of Moser is a corollary of our result.

2.3. Proof of Theorem 2.2

2.3.1. Preliminary

The proof of Theorem 2.2 is based on two key results. The first one is of
combinatorial nature, and is related to the dynamics on the stable or unstable
manifold (the triviality lemma). The second one, if of geometrical nature, and is
related to the transverse structure in each iterates of the homoclinic point.

Let x0ARn; we denote gðx0Þ the orbit of x0 under f :

Lemma 2.1 (Triviality lemma). Let f be an analytic diffeomorphism of Rn satisfying

assumption (ii) of Theorem 2.2. Let A be an analytic function on W�ðpÞ (resp. WþðpÞ)
such that AðxÞ ¼ 0 for all xAgðx�Þ (resp. xAgðxþÞ), where x� (resp. xþ) is an

admissible point of W�ðpÞ (resp. WþðpÞ), then A ¼ 0 on W�ðpÞ (resp. WþðpÞ).
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The proof is given in the next section.

Lemma 2.2 (Geometrical lemma). Let f be an analytic diffeomorphism of Rn

satisfying the assumptions of Theorem 2.2. Let A be a function of class C1 which is

constant on W�ðpÞ,WþðpÞ; then DAðxÞ ¼ 0 for all xAgðhÞ:

The proof is given in appendix.

2.3.2. Proof

Let P be an analytic first integral for f : The idea is to prove by induction, the

cancellation of the successive derivatives of P; denoted DPiðxÞ; for all xAgðhÞ where

h is an admissible point. As P is analytic on U and W�ðpÞ,WþðpÞCU which is a
connected set, we deduce that P ¼ const on U:

The induction is based on the following property.

ðhnÞ We have DPiðxÞ ¼ 0 for all xAgðhÞ; and 1pipn:
This property is satisfied for n ¼ 1: Indeed, we have PðxÞ ¼ const on

W�ðpÞ,WþðpÞ by definition. The geometrical lemma implies DPðxÞ ¼ 0 for all
xAgðhÞ:

We now prove that ðhnÞ implies ðhnþ1Þ: By ðhnÞ; we have DPnðxÞ ¼ 0 for all
xAgðhÞ: By the triviality lemma, we deduce that DPnjW�ðpÞ ¼ 0 and DPn jW�ðpÞ ¼ 0:

Then, by the geometrical lemma, we obtain DPnþ1ðxÞ ¼ 0 for all xAgðhÞ:
By induction, we then have DPiðxÞ ¼ 0 for all xAgðhÞ and iX1; which concludes

the proof of the theorem. &

2.4. Proof of the triviality lemma

2.4.1. Reduction to a linear diffeomorphism

Let f �ðxÞ be the restriction of f to W�ðpÞ: The linear map Df �ðpÞ admits
eigenvalues l�i ; i ¼ 1;y; n�; such that 0oj Reðl�i Þ jo1 for i ¼ 1;y; n�: Moreover,

by the non-resonance condition (ii) of Theorem 2.2, we have the Poincaré theorem
[1, p. 186], for analytic linearization of f �: There exists an analytic coordinates
system y ¼ zðxÞ; defined on an open neighbourhood U of p in W�ðpÞ; such that

z3f �
3z�1 ¼ f �

lin; where f �
linðxÞ ¼ Df �ðpÞ:x: We denote by x� the image of h in this

coordinates system.

As Aððf �ÞkðhÞÞ ¼ const by assumption, we have A3z�1
3ðflinÞk

3zðx�Þ ¼ const: We

denote Ã ¼ P3z�1 and y� ¼ zðx�Þ; then

Ãððf �
linÞ

kðy�ÞÞ ¼ const:

The function Ã is still analytic on U : If Ã 	 0 on U ; then A 	 0 on z�1ðUÞ: As

z�1ðUÞ an open neighbourhood of W�ðpÞ; and W�ðpÞ is a connected set, we have
A 	 0 on W�ðpÞ:

We can always find an open set VCU ; containing p; such that ÃðxÞ ¼
P

n anx
n; for

all xAV :
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Moreover, we can find an holomorphic coordinates system which diagonalizes f �
lin:

We denote by F�
lin :Cn�-Cn� the linear mapping defined by F�

linðxÞ ¼ L�:x; where

L� is a diagonal matrix, constituted of the eigenvalues l�i ; i ¼ 1;y; n�: We denote

by h� the image of h in this coordinates system. A similar reasoning for WþðpÞ
produces a point hþ:

Definition 2.1. A point hAW�ðTÞ (resp. WþðTÞ) is called admissible if h� (resp. hþ)

belongs to ðC
Þn� (resp. ðC
Þnþ). A homoclinic point h is called admissible if hþ and

h� belongs to ðC
Þn� and ðC
Þn� , respectively.

Remark 2.2. We do not know if admissible points are generic in the analytic
category.

By the previous remarks, the triviality lemma follows from the following lemma.

Lemma 2.3. Let F :Cn-Cn be a linear mapping defined by FðxÞ ¼ L:x; where L is a

diagonal matrix whose eigenvalues li; i ¼ 1;y; n; satisfy the non-resonance condition

and are such that jlijo1 for i ¼ 1;y; n (resp. jlij41 for i ¼ 1;y; n). Let A be an

holomorphic function and h a point in ðC
Þn: If AðF kðhÞÞ ¼ 0 for all kAN then A 	 0:

The proof is detailed in the next paragraph.

2.4.2. Proof of Lemma 2.3

We give the proof for a contracting mapping. The case of an expansive mapping is
similar.

Let F :Cn-Cn be of the form

FðxÞ ¼ ðl1x1;y; lnxnÞ;

where 0ojlijo1 for i ¼ 1;y; n and satisfy the non-resonance condition. Let h ¼
ðh1;y; hnÞAðC
Þn

; and

AðxÞ ¼
X
nANn

anx
n;

n ¼ ðn1;y; nnÞ; xn ¼ xn1
1 yxnn

n ; an holomorphic function. We denote

jnj ¼ n1 þ?þ nn:

We have AðF kðhÞÞ ¼ 0 for all kAN by assumption, then

a0 þ
X
n

anl
knhn ¼ 0; 8kAN: ð2Þ

As the eigenvalues ðl1;y; lnÞ satisfy a non-resonance condition, the quantities
jlnj; nANn can be totally ordered, i.e.

jln0 j4jln1 j4?4jlnk j4? :
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As a consequence, Eq. (2) is equivalent to

X
iX0

ani
lkni hni ¼ 0; 8kAN: ð3Þ

The cancellation of A is done by induction. We first factorize Eq. (3) by ln0 :
We obtain

an0h
n0 þ

X
iX1

ani

lni

ln0

� �k

hni ¼ 0; 8kAN: ð4Þ

As jlni=ln0 jo1 for all iX1; taking the limit of (4) when k-N; we obtain

an0h
n0 ¼ 0: ð5Þ

As h is an admissible point, we have hn0a0 and an0 ¼ 0:
A simple induction on i allows us to prove that A 	 0: This concludes the proof of

the lemma. &

3. Normally hyperbolic tori

Let f be an analytic diffeomorphism of an analytic manifold M; and T an
invariant, n-dimensional normally hyperbolic torus for f : Following [7, p. 322], there
exists an analytic coordinates system, defined in a neighbourhood U of T ; such that
f takes the form

f ðy; s; uÞ ¼ ðyþ 2po;LþðyÞs;L�ðyÞuÞ þ rðy; s; uÞ; ð6Þ

where ðy; s; uÞATn � Rl� � Rlþ ; r is of order 2 in s and u; and rðy; 0; uÞ ¼ 0;
rðy; s; 0Þ ¼ 0:

In this coordinates system, the invariant torus T is given by

T ¼ fðy; s; uÞATn � Rl� � Rlþ js ¼ u ¼ 0g

and its stable and unstable manifolds are given by

W�ðTÞ ¼ fðy; s; uÞATn � Rl� � Rlþ ju ¼ 0g;

WþðTÞ ¼ fðy; s; uÞATn � Rl� � Rlþ js ¼ 0g:

respectively.
The torus T is said to be reducible if the matrices LsðyÞ; s ¼ 7; are

independent of y:
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Definition 3.1. An homoclinic point h to T is called admissible if for some iterates,

we have f n�ðhÞ ¼ ðy�; s�; 0ÞAW�ðTÞ and f nþðhÞ ¼ ðyþ; 0; uþÞ with s�AðR
Þl� and

uþAðR
Þlþ :

We have the following theorem.

Theorem 3.1. Let T be a reducible invariant normally hyperbolic torus of an analytic

diffeomorphism f. We assume that

(i) the stable and unstable manifold intersect transversally in an admissible

homoclinic point h,
(ii) the dynamics on the torus is minimal,
(iii) the eigenvalues associated to the stable and unstable manifold, denoted by lsi ;

i ¼ 1;y; ls satisfy the non-resonance condition

ðjlsi jÞ
na1;

for all nAZls
\f0g; s ¼ 7:

Then, the discrete dynamical system defined by f does not admit an analytic first

integral.

The scheme of proof is similar to that of Theorem 2.2. The geometrical lemma can
be applied. We only need to prove the following version of the triviality lemma.

Lemma 3.1 (Triviality lemma for normally hyperbolic tori). Let T be a reducible

normally hyperbolic torus. Let hþ (resp. h�) be an admissible point of WþðTÞ (resp.

W�ðTÞ), and A an analytic function, which vanishes on the orbit gðhþÞ (resp. gðh�Þ) of

hþ (resp. h�). If the modulus of the eigenvalues of Lþ (resp. L�) satisfy the

non-resonance condition and the flow on T is minimal, then A 	 0 on WþðTÞ
(resp. W�ðTÞ).

Proof. We detail the proof for W�ðTÞ: The proof is similar for WþðTÞ:
Let A be an analytic function on W�ðTÞ: In a sufficiently small neighbourhood V

of T ; A takes the form

Aðy; sÞ ¼
X

kANl�
akðyÞsk; ð7Þ

where akðyÞ is a 2p periodic function of y:
Let h� ¼ ðy�; s�ÞAU-W�ðTÞ such that s�a0: The restriction of f to W�ðTÞ is

defined in U-W�ðTÞ by

f �ðy; sÞ ¼ ðyþ o;L�sÞ: ð8Þ
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By assumption, we have Aððf �Þmðh�ÞÞ ¼ 0 for all mAN; hence

X
kANl�

akðy� þ moÞðl�Þmkðs�Þk ¼ 0; mAN: ð9Þ

As the eigenvalues l� satisfy a non-resonance condition, the quantities ðl�Þk;

kANl� ; are totally ordered, i.e.

ðl�Þk04ðl�Þk14?4ðl�Þki4? : ð10Þ

As a consequence, Eq. (9) is equivalent to

X
iX0

aki
ðy� þ moÞðl�Þmkiðs�Þki ¼ 0; 8mAN: ð11Þ

The cancellation of A is done by induction on i: We factorize ðl�Þmk0 in Eq. (11).
We obtain

ak0
ðy� þ moÞðs�Þk0 þ

X
iX1

aki
ðy� þ moÞ ðl�Þki

ðl�Þk0

 !m

ðs�Þki ¼ 0; 8mAN: ð12Þ

As jðl�Þki=ðl�Þk0 jo1 for all iX1; and s�AðC
Þl� ; we have, taking the limit of (12)
when m-N;

lim
m-N

ak0
ðy� þ moÞ ¼ 0: ð13Þ

As o is non-resonant, we deduce, by a density argument, that ak0
ðyÞ ¼ 0 for all

yATn:
A simple induction on i concludes the proof. &

4. Partially hyperbolic tori

Let M be an analytic symplectic manifold of dimension 2n þ 2l; and H an analytic
Hamiltonian system defined on M: We call partially hyperbolic torus, an invariant n-
dimensional torus, for which there exists a neighbourhood such that the
Hamiltonian takes the form

Hðf; I ; s; yÞ ¼ *o:I þ 1
2

I :Gf þ x:Py þ gðf; I ; x; yÞ;

where ðf; I ; x; yÞATn � Rn � Rl � Rl ; with the usual scalar product, G and P two
symmetricals matrices, and g is of order 3 in ðI ; x; yÞ:
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We assume that *o satisfies a diophantine condition

j *o:kjX g
jkjt ð14Þ

for all kAZn
\f0g; g40 and t41:

The partially hyperbolic torus T is defined by

T ¼ fðf; I ; x; yÞATn � Rn � Rl � Rl jI ¼ x ¼ y ¼ 0g:

Its stable manifold (resp. unstable manifold), denoted by W�ðTÞ (resp. WþðTÞ), is
defined by

W�ðTÞ ¼ fðf; I ; x; yÞATn � Rn � Rl � Rl jI ¼ y ¼ 0g;

ðresp:WþðTÞ ¼ fðf; I ; x; yÞATn � Rn � Rl � Rl jI ¼ x ¼ 0gÞ:

As *o is non-resonant, there exists a 2n-dimensional Poincaré section S; defined in a
neighbourhood of T ; such that the first return map takes the form

f ðy; r; s; uÞ ¼ ðyþ 2poþ nr; r;Ls;L�1uÞ þ rðy; r; s; uÞ; ð15Þ

where ðy; r; s; uÞATn�1 � Rn�1 � R� R; r is of order 2 in r; s and u;o is non-
resonant, and L is a diagonal matrix with real eigenvalues li; i ¼ 1;y; l:

Remark 4.1. Invariant partially hyperbolic tori of near integrable Hamiltonian
systems, obtained by bifurcation of resonant tori of integrable Hamiltonian systems
along simple resonance ðl ¼ 1Þ; possess a first return map of form (15). For l41;
this form is valid only under particular conditions of reductibility of the flow on the
torus [6].

Theorem 4.1. Let T be an invariant l-partially hyperbolic torus of an analytic

Hamiltonian system H; lX1: Let H be the energy level containing T. We assume that

(i) the stable an unstable manifold of T intersect transversally in H;
(ii) the eigenvalues li; i ¼ 1;y; l; satisfy the non-resonance condition

lna1; ð16Þ

where nAZl
\f0g; n ¼ ðn1;y; nlÞ; ln ¼ ln11 ylnl

l :

Then, the Hamiltonian system does not admit an analytic first integral

independent of H.

The proof is similar to the normally hyperbolic case. We are then reduce to prove the
triviality lemma for partially hyperbolic tori.
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Lemma 4.1 (Triviality lemma for partially hyperbolic tori). Let T be a partially

hyperbolic torus. Let hþ (resp. h�) be an admissible point of WþðTÞ (resp. W�ðTÞ),
and A an analytic function, which vanishes on the orbit gðhþÞ (resp. gðh�Þ) of hþ (resp.

h�). If the modulus of the eigenvalues of L satisfy the non-resonance condition and the

flow on T is minimal, then A 	 0 on W�ðTÞ (resp. WþðTÞ).

Proof. We prove the lemma for the stable manifold, the case of the unstable

manifold being similar. The stable manifold is defined by W�ðTÞ ¼
fðy; I ; s; uÞATn � Rn � Rl � Rl jI ¼ u ¼ 0g: An analytic function on W�ðTÞ is then

of the form Aðy; sÞ ¼
P

kANn akðyÞsk: As the dynamics on W�ðTÞ is of the form

f �ðy; sÞ ¼ ðyþ 2po;LsÞ; we must solve an equation similar to (9). &

5. The three-body problem and Arnold diffusion

The elliptic restricted three-body problem is the study of the behaviour of a
particle A; of mass zero, in Newtonian interaction with two points J and S; of mass
mA0; 1 and 1� m; respectively, such that the vector SJ describes an ellipse, with
eccentricity e and focus at the centre of mass.

The Hamiltonian of this system is given by

He;mðt; q; pÞ ¼ jjpjj2

2
� m

dðt; q; eÞ þ 1� m
sðt; q; eÞ

� �
; ð17Þ

where ðt; q; pÞAR� R2 � R2; jj � jj is the Euclidean norm, dðt; q; eÞ ¼ jjq � Jtjj;
sðt; q; eÞ ¼ jjq � Stjj with St ¼ ðð1� mÞr cos u; ð1� mÞr sin uÞ; Jt ¼ ð�mr cos u;

mr sin uÞ; r ¼ 1�e2

1þe cos u
and u ¼ e sin u þ tffiffiffiffiffiffiffiffi

1�e2
p :

In [8], Xia proves, in his study of Arnold diffusion in the three-body problem, the
following theorem.

Theorem 5.1. For 0oe51 and 0om5e; there exists invariant 1-partially hyperbolic

tori for He;m: Let T be such a torus. We denote by He;m the energy level containing T.

The stable and unstable manifold of T intersect transversally in He;m:

The first return map defined in a neighbourhood of Xia tori is of form (15).
Moreover, the dynamics on each of these tori is minimal. As they are 1-hyperbolic,
the non-resonance condition, as well as the genericity of the homoclinic point are
always satisfied. Then, Theorem 4.1 applies, and we have:

Theorem 5.2. The elliptic restricted three-body problem does not admit an analytic first

integral independent of He;m; for 0oe51 and 0om5e:
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This theorem is announced by Xia in [8] without proof. This result extend to the
planar three-body problem using Xia work [9].

6. Conclusion

The proof of Theorem 3.1 extends immediately to the following case with minor
modifications.

Theorem 6.1. Let A be a normally hyperbolic manifold of an analytic diffeomorphism f

defined on an analytic manifold M. We assume that there exists an analytic coordinates

systems ðx; s; uÞAA � Rl � Rn; defined on an open neighbourhood of A such that f is of

the form

f ðx; s; uÞ ¼ ðgðxÞ;L�s;LþuÞ þ rðx; s; uÞ; ð18Þ

where Ls; s ¼ 7 are diagonal matrices, r is of order 2 in s and u, and g : A-A is a

diffeomorphism.

We assume that

(i) the stable and unstable manifold of A intersect transversally in M. There exists an

admissible homoclinic point h in W�ðAÞ-WþðAÞ;
(ii) g is ergodic on A,
(iii) the eigenvalues ls of Ls; s ¼ 7 satisfy a non-resonance condition.

Then, f does not admit an analytic first integral except constant.

We follow the proof of Theorem 3.1. The analogue of Eq. (11) isX
iX0

aki
ðgmðx�ÞÞðl�Þkiðs�Þki ¼ 0; 8mAN; ð19Þ

where ðx�; s�; 0Þ are the coordinates of some iterates of the homoclinic point h: We
deduce

lim
m-N

ak0
ðgmðx�ÞÞ ¼ 0: ð20Þ

As g is ergodic, a density argument implies ak0
ðxÞ ¼ 0 for all xAA: A simple

induction on i concludes the proof.
Theorem 6.1 is then a first step toward the conjecture.
However, in order to cover a more general situation, we must deal with

non-reducible normally hyperbolic manifolds, i.e. the normal form (18) is replaced by

f ðx; s; uÞ ¼ ðgðxÞ;L�ðxÞs;LþðxÞuÞ þ rðx; s; uÞ: ð21Þ

In this case, the analogue of Eq. (11) is very complicated. Even in the (non-generic)
case of diagonal matrices LsðxÞ; s ¼ 7; we must use Oseledec multiplicativ ergodic

theorem (see [4, p. 665]) in order to conclude.
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Appendix. The geometrical lemma

The intersection between W�ðpÞ and WþðpÞ is transversal in a space of dimension

n; with W�ðpÞ ¼ n� and dimWþðpÞ ¼ nþ; n ¼ n� þ nþ: The geometrical lemma is a
consequence of the following lemma.

Lemma A.1 (General geometrical lemma). Let M be an n-dimensional manifold of

class Ck; kX1; and V� (resp. Vþ) a n�-submanifold (resp. nþ -submanifold) of class

Ck; such that V� and Vþ intersect transversally in M. Let P a function on M of class

C1; constant on V�,Vþ; then DPðxÞ ¼ 0 for xAVþ-V�:

Proof. As V� and Vþ intersect transversally, the tangent bundle in xAVþ-V� is

TxM ¼ TxV� þ TxVþ: As P is constant on V� (resp. Vþ), DPðxÞ is zero on TxV�

(resp. TxVþ), then identically zero. &
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