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Abstract

In a previous paper, we defined, following a previous work of Kolvankar and

Gangal, a notion of a-derivative, 0 < a < 1. In this article, we study a-differential
equations associated to our fractional calculus. We then discuss a fundamental problem

concerning the Schr€odinger equation in the framework of Nottale�s scale relativity

theory.

� 2004 Elsevier Inc. All rights reserved.
1. Introduction

In a previous paper [3], we have introduced, following a previous work of

Kolvankar and Gangal [9], a new fractional calculus, which allows us to per-

form local analysis of non-differentiable functions. We have called a-derivative
this new notion, which can be seen as a local version of the classical Riemann–

Liouville derivative.
Many properties of the a-derivatives are given in [3], and we refer to this

article for more details about this subject.
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In this article, we study fractional differential equations associated to the a-
derivative. Such kind of equations appears in many problems. In particular, we
have find a fractional differential equation related to the classical Schr€odinger
equation [4], by studying Nottale�s approach to quantum mechanics via a

fractal space–time [10].

This paper is organized as follow:

In Section 2, we recall some basic results on a-differentiability, 0 < a < 1,

introduced in [3]. In [3] a generalized Taylor expansion theorem is obtain for a-
differentiable function. The proof use the fact that Ia

a;r � Da
a;r½f ðxÞ � f ðaÞ�ðxÞ ¼

f ðxÞ � f ðaÞ, for r ¼ �, which is not true for an arbitrary function. We take the
opportunity to give a complete proof of this result in Appendix A.

Section 3 introduces fractional differential equations associated to a-differ-
entiation, and study some of their properties. Section 4 is devoted to linear

fractional differential equations. Section 5 contains fundamental results about

fractional differential equations of the form daf ðtÞ ¼ aðtÞ þ ibðtÞ, where aðtÞ
and bðtÞ are continuous real valued functions, and da is the a-derivative. We

prove many negative results. In particular, we prove that the fractional dif-

ferential equations daf ðtÞ ¼ aðtÞ or daf ðtÞ ¼ iaðtÞ, 0 < a < 1, where aðtÞ is a
continuous real valued function, do not possess solutions.

In Section 6 we discuss the derivation of the Schr€odinger equation in the

scale relativity setting of Nottale [10]. We first gives basic results about the

scale calculus introduced in [4]. We then define the scale quantization procedure

of Newtonian mechanics developed in [4] following Nottale�s approach [10]

and state the scale relativity principle. We recall that the quantized analogue of

the classical Newton equation of dynamics is a Schr€odinger equation, as long
as, there exists a non-trivial solution to the fractional differential equation
d1=2f ðtÞ ¼ iC, or d1=2f ðtÞ ¼ C, C > 0, 0 < a < 1, where f ðtÞ is the function

describing the motion of the free particle. Using results from Section 5, we

prove that we cannot make this assumption. As a consequence, we are lead to

several new assumptions which we discuss in this paper.
2. Local fractional calculus

We refer to our paper [3] for more details and results about the notion of

a-differentiation.
2.1. Riemann–Liouville differentiability

Let f be a continuous function on ½a; b�. For all x 2 ½a; b�, we define the left
(resp. right) Riemann–Liouville integral at point x by
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Ia
a;�ðf ÞðxÞ ¼

1

CðaÞ

Z x

a
ðx� tÞa�1f ðtÞdt;

Ia
b;þðf ÞðxÞ ¼

1

CðaÞ

Z b

x
ðt � xÞa�1f ðtÞdt;
respectively.

The left (resp. right) Riemann–Liouville derivative at x is given by
Da
a;�ðf ÞðxÞ ¼

dI1�a
a;� ðf ÞðxÞ
dx

;

Da
b;þðf ÞðxÞ ¼

dI1�a
b;þ ðf ÞðxÞ
dx

:

Definition 1.We say that the function f admits a derivative of order 0 < a < 1

(Riemann–Liouville) at x 2 ½a; b� by below (resp. above) if Da
a;�ðf ÞðxÞ exists

(resp. if Da
b;þðf ÞðxÞ exists).

Of course, we obtain different values of the Riemann–Liouville derivative
for different values of the parameter a (resp. b). Moreover, the derivative of a

constant C 2 R is not equal to zero. Indeed, we have
Da
a;�ðCÞðxÞ ¼

C
Cð1� aÞ

1

ðx� aÞa :
These two remarks give rise to great difficulties in the geometric interpretation

of the Riemann–Liouville derivative. In particular, there is no relationship

between the local geometry of the graph of f and its derivative, despite recent

progress [2].

Definition 2. Let f be a continuous function on ½a; b�, we call right (resp. left)
local fractional derivative of f at y 2 ½a; b� the following quantity
da
rf
dya

ðyÞ ¼ lim
x!yr

Da
y;�r½rðf � f ðyÞÞ�ðxÞ; ð1Þ
for r ¼ � respectively.

We have the following obvious properties:

I(I) (gluing) if f is differentiable at x, we have
lim
a!1

da
rf
dxa

ðxÞ ¼ f 0ðxÞ; r ¼ �:
(II) We have
da
�ðCÞ
dxa ¼ 0 for all C 2 R and r ¼ �.
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In [3], we obtain the following simplified equivalent definition of local

fractional derivatives:

Theorem 1. The (right or left) local fractional derivative of f , da
rf ðxÞ is equal to
1 W

relatio
da
rf
dxa

ðxÞ ¼ Cð1þ aÞ lim
y!xr

rðf ðyÞ � f ðxÞÞ
j y � x ja : ð2Þ
The proof is based on the following generalized Taylor expansion theorem

proved in [3]:

Theorem 2. Let 0 < a < 1 and f be a continuous function, such that da
rf ðyÞ

exists, r ¼ �. Then, we have
f ðxÞ ¼ f ðyÞ þ r
1

Cð1þ aÞ
da

rf
dxa

ðyÞ½rðx� yÞ�a þ Rrðx; yÞ; ð3Þ
where limx!yr
Rrðx;yÞ

ðrðx�yÞÞa ¼ 0.

The proof of this theorem use the fact that the composition of the

Riemann–Liouville fractional integral and the fractional derivative of

Daf ðxÞ ¼ f ðxÞ � f ðaÞ, where a is the parameter, is equal to Daf ðxÞ, which is not
true in general. This result is implicit in [3]. As a consequence, we provide a

complete statement as well as a proof in Appendix A.

Remark 1. The Riemann–Liouville fractional derivative is not a derivation 1 on

the set of continuous functions. On the contrary, the differential operators
da

r=dt
a, r ¼ �, is a derivation and can be considered as a solution to the

following problem:

Problem. Can we find non-trivial derivations on the set of non-differentiable

functions?

By non-trivial we understand the two following conditions:

Let f be a continuous real valued function.

i(i) The H€older regularity of f can be read on the derivative;

(ii) One can recover the local geometry of the graph of f from the data of its

derivative.
e recall that an operator D acting on an algebra A is a derivation if it satisfies the Leibniz

n DðxyÞ ¼ Dx � y þ x �Dy for all x; y 2 A.
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Conditions (i) and (ii) are satisfied by the (left and right) local fractional

derivative. The maximal H€older regularity of a given function is recover as the
maximal order of local differentiation (see [4] for more details).

Moreover, using the local fractional derivative, we can obtain a local

approximation of the graph of f via the generalized Taylor expansion theorem.
2.2. Non-differentiability and a-derivability

Let f ðtÞ be a continuous function on ½a; b�. We remark that da
þf ðxÞ 6¼ da

�f ðxÞ
in general. In the differentiable case, we have (by (ii), Section 2.1),

d1þf ðxÞ ¼ d1�f ðxÞ. In other words, when a ¼ 1, the non-differentiability of a

function is characterized by the existence of right and left local fractional
derivatives, which carry different information on the local behaviour of the

function. It is then necessary to introduce a new notion which takes into ac-

count these two data.
Definition 3. Let f ðtÞ be a continuous function on ½a; b� such that da
rf ðyÞ exists

for r ¼ � and y 2 ½a; b�. We define the a-derivative of f at y, and we denote
daf =dtaðyÞ, the quantity
daf
dta

ðyÞ ¼ 1

2

da
þf
dta

ðyÞ
�

þ da
�f
dta

ðyÞ
�
þ i

1

2

da
þf
dta

ðyÞ
�

� da
�f
dta

ðyÞ
�
; ð4Þ
where i2 ¼ �1.

In the following, we will use the notation daf ðyÞ instead of daf =dta for

shortness.
When f is differentiable, we have d1f ðyÞ ¼ f 0ðyÞ. If f is 1-differentiable, the

non-differentiability is equivalent to the existence of an imaginary part for the

1-derivative.
Definition 4. A function f is said a-differentiable if the a-derivative exists at all
points.

We denote by Ca the set of a-differentiable functions.
3. Fractional differential equations

In the following, we denote byHa, the set of continuous functions satisfying

a H€older condition j f ðxÞ � f ðyÞ j< c j x� y ja, c > 0.
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3.1. Definitions and notations

We begin by a general remark about the terminology that we use.

Let D be a given differential operator on an algebra A. A differential equa-

tion on A is an equation of the form D � x ¼ f ðxÞ for x 2 A, and f : A ! A a

fixed map. This justify the following terminology of fractional differential

equations:
Definition 5. A fractional differential equation of order a, 0 < a < 1, is an

equation of the form
day
dta

¼ f ðy; tÞ; ð5Þ
where y : R ! Rn is an a-differentiable function in the variable t 2 R, and

f ðy; tÞ : Rn � R ! Cn is a complex valued function.
A Cauchy data for (5) is an initial condition
yðt0Þ ¼ y0; ð6Þ
where y0 2 Rn and t0 2 R.

3.2. The trivial case

We study the trivial case, i.e. fractal differential equations of the form
day
dta

¼ 0: ð7Þ
We first state the following trivial result:
Lemma 1. Let 0 < a < 1 be given. For all functions f : R ! R, such that
f 2 Hc, where 0 < a < c, we have daf =dta ¼ 0.

We deduce the following important result:
Theorem 3. The Cauchy problem day=dta ¼ 0, y : R ! R, with yðt0Þ ¼ y0,
admits an infinite set of solutions.
Proof. The set of H€olderian functionsHc, c > a, belongs to the set of solutions
by Lemma 1. Moreover, the Cauchy data does not allow us to fix a particular

solution of this set. h
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A function satisfying day=dta ¼ 0 is called a fixed function 2 of order

0 < a < 1 in the following.
We denote by Fa the set of fixed functions of order 0 < a < 1.

Remark 2. The characterization of the setFa is a difficult problem. It is related

to our study of Section 5.

3.3. The general case

Using Theorem 3, we easily obtain the following result:

Theorem 4. If a Cauchy problem day=dta ¼ f ðtÞ, yðt0Þ ¼ y0 admits a solution,
then it admits an infinity of solutions.

Proof. Let yðt; t0; y0Þ be a solution, then ~yðt; t0; y0Þ ¼ yðt; t0; y0Þ þ gðt; t0; y0Þ,
where g is a fixed function of order a such that gðt0Þ ¼ 0, is again a solution. As

Fa is an infinite set, this concludes the proof. h

This situation is very different from usual results for ordinary differential

equations where we have unicity of solutions by fixing a Cauchy data. We can

recover unicity in our case by introducing a notion of a-equivalence.
We first remark that two solutions of a Cauchy problem differs by a fixed

function.

Definition 6. Let f and g be two continuous functions. We say that f is a-
equivalent to g, and we denote f�a g if and only if f � g 2 Fa.

We easily prove that �a is an equivalence relation.

Theorem 5. Any Cauchy problem day=dta ¼ f ðtÞ, yðt0Þ ¼ y0, admits a unique
solution in Ca=�a .

Proof. Let y1ðtÞ and y2ðtÞ be two solutions. We have yðtÞ ¼ y1ðtÞ � y2ðtÞ 2 Fa.
We deduce that y1�

a y2. This concludes the proof. h

We also have the following regularity result:

Theorem 6. Any solution of a fractional differential equation of order a is a
function belonging to Ca.
2 This terminology comes from the analogy existing between fixed functions and fixed points for

ordinary differential equations, from the point of view of definitions.
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4. Linear fractional differential equations

We discuss basic properties of linear fractional differential equations.

Definition 7. A linear fractional differential equation of order a, 0 < a6 1, is a

fractional differential equation of the form
day
dta

¼ aðtÞy þ BðtÞ; ð8Þ
where aðtÞ and BðtÞ are complex valued functions.

The homogeneous part of (8) is
day
dta

¼ aðtÞy: ð9Þ
Lemma 2. Let y1 and y2 be two solutions of (9). Then, Y ¼ fy1 þ gy2, where f and
g belong to Fa, is also a solution of (9).

Proof. As f and g belong to Fa, we have daf ¼ dag ¼ 0. We then obtain

daðfy1þgy2Þ¼ f day1þy1d
af þgday2þy2d

ag. We deduce that daðY Þ¼ faðtÞy1þ
gaðtÞy2¼aðtÞY , which concludes the proof. h

Lemma 3. The solutions of a linear fractional differential equation day ¼ aðtÞy
are given by
yðtÞ ¼ kðtÞeAðtÞ; ð10Þ
where kðtÞ 2 Fa and daAðtÞ ¼ aðtÞ.

Proof. We have daðlogðyÞÞ ¼ ð1=yÞday. We deduce that daðlogðyÞÞ ¼ aðtÞ. Let
AðtÞ be such that daAðtÞ ¼ aðtÞ, then logðyÞ ¼ AðtÞ þ vðtÞ, where v 2 Fa. Hence,

we have yðtÞ ¼ kðtÞeAðtÞ with kðtÞ 2 Fa. h

We also have a construction of the solutions of a non-homogeneous frac-

tional equation using a particular solution, and the general form of a solution

to the homogeneous equation:

Lemma 4. Let yp be a particular (non-trivial) solution of (8). A function y is a
solution of (8) if and only if it can take the form
y ¼ yh þ yp; ð11Þ
where yh is a solution of the associated homogeneous equation.
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Proof. We have dayh ¼ aðtÞyh and dayp ¼ aðtÞyp þ BðtÞ. Hence, we obtain

daðyh þ ypÞ ¼ aðtÞðyh þ ypÞ þ BðtÞ.
Let y be a solution of (8). Then, we have
daðy � ypÞ ¼ aðtÞy þ BðtÞ � aðtÞyp � BðtÞ ¼ aðtÞðy � ypÞ: ð12Þ
The function y � yp is a solution of the homogeneous equation. This concludes

the proof. h

In order to compute a particular solution, one must have a method similar

to the classical ‘‘variation of constant’’ for ordinary differential equations.

Precisely, the general form of a solution for the linear equation is
yðtÞ ¼ kðtÞ expAðtÞ, where kðtÞ 2 Fa. We look for a solution of the form

yðtÞ ¼ cðtÞ expAðtÞ with cðtÞ 2 Ca. A simple computation gives
dacðtÞ ¼ BðtÞ expð�AðtÞÞ: ð13Þ
By solving this fractional differential equation, simpler than the initial one, we

obtain a particular solution.
Theorem 7. Let y1 and y2 be two solutions of the fractional equations
day ¼ aðtÞy þ B1ðtÞ and day ¼ aðtÞy þ B2ðtÞ; ð14Þ
respectively.
Then, y1 þ y2 is a solution of the fractional differential equation
day ¼ aðtÞy þ ðB1ðtÞ þ B2ðtÞÞ: ð15Þ
Proof. This is a simple computation. h
4.1. Fractional differential equations of order a þ n, n 2 N, 0 < a < 1

Let f be a differentiable function of class Cn. We say that f is of class Cnþa,
0 < a < 1, if
daþn
r f ðxÞ ¼ da

rðf ðnÞÞðxÞ; r ¼ �; ð16Þ
exists for all x 2 R, where f ðnÞ is the n-term derivative of f .
In [3], we prove the following Taylor�s expansion theorem:
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Theorem 8. Let 0 < a < 1, f 2 Cnþa, then
f ðxÞ ¼ f ðyÞ þ
Xn
i¼1

f ðiÞðyÞ
Cðiþ 1Þ ðx� yÞi þ r

da
rf

ðnþ1ÞðyÞ
Cðnþ a þ 1Þ ½rðx� yÞ�nþa

þ Rrðx; yÞ; ð17Þ
with limx!yr
Rrðx;yÞ

ðrðx�yÞÞaþn ¼ 0, r ¼ �.

We then are lead to the following notion of fractional differential equation

of order a þ n, 0 < a < 1:

Definition 8. A fractional differential equation of order a þ n, is an equation of
the form
daþny
dtaþn

¼ f ðt; y; y0; . . . ; yðn�1ÞÞ; ð18Þ
where f is a function defined on an open set of R� Rn.

The classical idea is to study fractional differential equations of order a þ n,
n 2 N by fractional differential equation of order a, but in a bigger space.

Let
zk ¼
dkz
dtk

; k ¼ 1; . . . ; n: ð19Þ
The fractional differential equation of order a þ n (18) is equivalent to
dazn
dta

¼ f ðt; y; z1; . . . ; zn�1Þ;

dzn�1
dt

¼ zn;

..

.

dy
dt

¼ z1:

ð20Þ
We have the following result:

Theorem 9. Solutions y of a fractional differential equation (18) of order a þ n
are given by the solutions of the system (20).
5. About fractal differential equations of the form day ¼ aðtÞ þ ibðtÞ

In this section we investigate properties of fractional differential equations of

the form
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dayðtÞ
dta

¼ aðtÞ þ ibðtÞ; ð21Þ
where aðtÞ and bðtÞ are two real valued continuous functions defined on R.

5.1. Constant fractional differential equations

Let ½a; b� be a compact interval of R. If f is continuous, then, there exists at

least two points u;U 2 ½a; b� such that
f ðuÞ6 f ðxÞ6 f ðUÞ 8x 2 ½a; b�: ð22Þ
With these notations, we prove the following lemma:

Lemma 5. If da
þf ðxÞ ¼ 1 8x 2 ½a; b�, then U ¼ b.

Proof. If U 2�a; b½, then U is a local maxima and we must have da
þf ðUÞ < 0.

This is impossible by assumption.

If U ¼ a, then U is such that f ðUÞP f ðxÞ for all x 2 ½a; b�. We deduce that
da
þf ðaÞ < 0, which is again a contradiction.

If U ¼ b, the only constraint is on the left derivative of b, and we can have

da
þf ðbÞ ¼ 1. h

Lemma 6. If da
�f ðxÞ ¼ �1 for all x 2 ½a; b�, then U ¼ a.

Proof. If U 2�a; b½, then U must be a local maximum and we obtain a con-

tradiction. If U ¼ b, as we have f ðUÞP f ðxÞ 8x 2 ½a; b�, we deduce

da
�f ðUÞP 0, which is impossible. The only possible case is then U ¼ a. h

We deduce from these two lemmas:

Theorem 10. The fractional differential equation daf ðxÞ ¼ i has no solutions for
0 < a6 1.

Proof. As daf ¼ i, we have
da
þf ðxÞ ¼ 1 and da

�f ðxÞ ¼ �1 8x 2 R: ð23Þ
Let ½a; b� be an arbitrary closed interval of R. By Lemmas 6 and 5, we deduce

that U ¼ a and U ¼ b. Then, f is a constant function on ½a; b�.
If 0 < a < 1, then f is non-differentiable. As f is a constant function, it is

differentiable, in contradiction with the assumption 0 < a < 1.
If a ¼ 1, we obtain again a contradiction. Indeed, as f is a constant function

(then differentiable), we have d1þf ðxÞ ¼ d1�f ðxÞ in contradiction with (23). This

concludes the proof. h
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We also prove:

Theorem 11. The fractional differential equation daf ¼ 1 has no solutions for
0 < a < 1.

Proof. The fractional differential equation daf ¼ 1 implies that
da
þf ðxÞ ¼ da

�f ðxÞ ¼ 1 8x 2 R: ð24Þ
We now prove that f is injective. Let x1 and x2 be two points of ½a; b� such
that f ðx1Þ ¼ f ðx2Þ. Then, by the generalized Rolle theorem (see [4]), there exists

a point c 2 ½x1; x2�, such that da
þf ðcÞd

a
�f ðcÞ6 0. This is impossible by

assumption. Then, f is injective.

As f is injective and continuous, we know that f is strictly monotone [7,

Lemma 3.8, p. 207]. By Lebesques�s theorem [8, p. 319], this function is almost

everywhere differentiable. As 0 < a < 1, this is impossible. This concludes the

proof. h

Theorems 10 and 11 allow us to prove:

Theorem 12. Fractional differential equations of the form daf ¼ aðtÞ and
daf ¼ iaðtÞ where aðtÞ belongs to Cc, c > a, and such that aðtÞ 6¼ 0, have no
solutions.

Proof. Let f be a solution of daf ¼ aðtÞ. Then, the function f ðtÞ=aðtÞ, which is a
well-defined function because aðtÞ 6¼ 0, is a non-trivial solution of day ¼ 1,

which is impossible by Theorem 11.

Indeed, we have daðf ðtÞ=aðtÞÞ ¼ ðdaf � aðtÞ � f ðtÞ � daaÞ=a2ðtÞ. As aðtÞ 2 Cc,

and c > a, we deduce that daa ¼ 0. Hence, we obtain daðf =aÞ ¼ 1.

In a similar way, we prove that daf ¼ iaðtÞ has no solutions. h

Along the same lines, we prove:

Lemma 7. The fractional differential equation daf ðxÞ ¼ 1þ i has no solutions if
0 < a < 1.

Proof. As daf ¼ 1þ i, we deduce that
da
þf ðxÞ ¼ 2 and da

�f ðxÞ ¼ 0 8x 2 R: ð25Þ
Let ½a; b� be a closed interval of R. As da
þf ðxÞ ¼ 2 on ½a; b�, we have U ¼ b. Let

u 2�a; b½ be a global minimum of f on ½a; b�, then f ðxÞP f ðuÞ 8x 2 ½a; b�.
Hence, there exists x0 2 ½a; u½ and d > 0 such that f ðx0ÞP f ðxÞ 8x 2 ½x0; x0 þ d½.
This implies da

þf ðx0Þ6 0, which is impossible by assumption. Then, we have

u ¼ a. We prove, along the same line as the proof of Theorem 11, that f is
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strictly increasing, and as a consequence, derivable almost everywhere by Le-

besque theorem. As 0 < a < 1, we have a contradiction. This concludes the
proof. h

We deduce from Lemma 7:
Theorem 13. Fractional differential equations of the form daf ðtÞ ¼ aðtÞð1þ iÞ,
with aðtÞ 6¼ 0 8t 2 R and aðtÞ 2 Fa, have no solutions for 0 < a < 1.
Proof. Let f be a solution of daf ðtÞ ¼ aðtÞð1þ iÞ, then daðf =aÞ ¼ ð1=aÞdafþ
f dað1=aÞ. As a 2 Fa, we have dað1=aÞ ¼ 0. Hence, we obtain daðf =aÞ ¼ 1þ i.

By Lemma 7, this equation has no solutions. This concludes the proof. h
5.2. A conjecture

All our results leads to the following conjecture:
Conjecture. Fractional differential equations of the form daf ðtÞ ¼ aðtÞ þ ibðtÞ,
0 < a < 1, where aðtÞ and bðtÞ are continuous functions, have no solutions.
Remark 3. The fractional differential equations that we have up to now con-
sidered are strongly constrained. Indeed, we assume that the order of fractional

differentiation is constant, which is a strong assumption on the H€olderian
behaviour of the possible solution (this means that the solution has a uniform

H€older exponent, using results from [3]).

We can generalize our definition, by assuming a non-uniform H€olderian
behaviour. We are lead to consider fractional equations of the form
daðtÞf ¼ aðtÞ þ ibðtÞ; ð26Þ
where aðtÞ is a continuous (or not) real valued function, such that 0 < aðtÞ < 1.

We refer to [14] for a first approach to fractional differentiation of variable

fractional order.
6. About the Schr€odinger equation

The Schr€odinger equation control the dynamical behaviour of quantum
particles. It can be obtained by the quantum mechanics formalism. Following

an idea of Nottale [10], we have proved [4], introducing a new kind of differ-

ential calculus, called the scale calculus, that the Schr€odinger equation is the
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classical Newton equation of motion but for a free particle on a fractal space–

time.
6.1. Reminder about the scale calculus

The scale calculus generalize the classical differential calculus by introducing

a notion of minimal resolution.

Let f be a continuous real valued functions. We define in [4] a real number

sðf Þ called the minimal resolution of f , such that sðf Þ ¼ 0 for an everywhere

differentiable function and sðf Þ > 0 for an everywhere non-differentiable

function.
We then introduce left and right quantum derivatives of f at point t as
�rf
�t

ðtÞ ¼ lim
h!sðf Þ

r
f ðtÞ � f ðt þ rhÞ

h
; r ¼ �: ð27Þ
We note that when f is differentiable, then sðf Þ ¼ 0, and we recover the

classical left and right derivatives.

The scale derivative of f at point t combines these two quantities in such a

way that we recover the classical derivative when f is differentiable:
�f
�t

ðtÞ ¼ 1

2

�þf
�t

�
þ��f

�t

�
� i

�þf
�t

�
���f

�t

�
: ð28Þ
We can extend this definition to complex valued functions as follow.

Let f be a complex valued continuous function. We denote by Reðf Þ and
Imðf Þ the real and imaginary part of f which are real valued continuous
functions. The scale derivative of f is defined as
�f
�t

¼ �Reðf Þ
�t

þ i
� Imðf Þ

�t
: ð29Þ
Remark 4. The extension of the scale calculus to complex valued functions is

not trivial (as in the case of local fractional calculus) as it mixes complex terms

in a complex operator.

The main formula that we use in the following is (see [4] for a proof):

Let X ðtÞ be in C1=2, and CðX ; tÞ be a C2 complex valued function. The scale

derivative of CðtÞ ¼ CðX ðtÞ; tÞ, is given by
�C

�t
¼ �x

�t
oC

ox
þ 1

2
aðtÞ o

2C

ox2
þ oC

ot
; ð30Þ
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where
aðtÞ ¼ ðd1=2þ xðtÞÞ2 � ðd1=2� xðtÞÞ2

2

 !
� i

ðd1=2þ xðtÞÞ2 þ ðd1=2� xðtÞÞ2

2

 !
: ð31Þ
6.2. The scale quantized Newton equation and the Schr€odinger equation

Classical mechanics is based on the Lagrangian formalism for the Newton

equation of dynamics. Let xðtÞ be the trajectory of a point-mass of mass m in a

given potential Uðx; tÞ. The classical Lagrangian associated to the dynamics of

x is
Lðx; v; tÞ ¼ 1

2
mv2 þ Uðx; tÞ; ð32Þ
where v is the classical speed of x given by v ¼ dx=dt.
We obtain the Newton equation of dynamics by writing the Euler–Lagrange

equation associated to L:
d

dt
oL
ov

� �
¼ oL

ox
: ð33Þ
The scale relativity principle developed by Nottale [10] implies that the Newton
equation of dynamics is related to a quantum analogue by the following

quantization procedure:

Scale quantization principle: The equation of dynamics keep the same form,

but the trajectories belongs to C1=2 and the classical time derivative o=ot is
replaced by the scale derivative �=�t.

Remark 5. Our assumption that quantum trajectories belongs to C1=2 is based

on Feynman–Hibbs [6] characterization of typical paths of quantum mechanics

(see Section 6.4). Moreover, the Heisenberg uncertainty relations which implies
that the Hausdorff dimension of a quantum mechanical path is 2 (see [1]), is

consistent with this assumption.

As a consequence, if we denote by Qð�Þ the map associating to each variable

or differential operator its quantum counterpart, we have the following rules:

ii(i) x 2 C1, X ¼ QðxÞ 2 C1=2,

i(ii) v 2 R, v ¼ dx=dt, and V ¼ QðvÞ 2 C, V ¼ �X=�t,
(iii) t 2 R, t ¼ QðtÞ.

Remark 6. The last condition meaning that we have not assume that the time

variable is itself a fractal variable.
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As a consequence, the classical Lagrangian Lðx; v; tÞ has the following

quantum analogue:
LðX ; V ; tÞ ¼ 1

2
mV 2 þ Uðx; tÞ: ð34Þ
Of course, by definition of V , the quantum Lagrangian L is a complex valued

function.

The quantized Newton equation of dynamics is given by:
1

2
m
�V
�t

¼ oU
oX

: ð35Þ
A classical notion associated to Lagrangian mechanics is the action, denoted

by Aðx; tÞ, and associated to v by the formula
mv ¼ oA
ox

: ð36Þ
We denote by AðX ; tÞ the quantum analogue of A. We then have
mV ¼ oA

oX
: ð37Þ
A basic consequence of the non-differentiability of X being the complex nature

of V , we introduce a complex valued function wðX ; tÞ defined by
wðX ; tÞ ¼ exp
iA

2mc

� �
; ð38Þ
where c 2 R is a normalization constant. The function w is the well-known

wave function.
Remark 7. In quantum mechanics the wave function is introduced by hand. In

the context of the scale relativity theory the wave function is only a reflection of

the loss of differentiability of the space–time structure via the complex nature

of the speed V .

Using the wave function, we can express the quantum speed V as
V ¼ �i2c o lnðwÞ
oX

: ð39Þ
The quantized Newton equation of dynamics (35) written in term of w is given

by:
2icm
�

�t
o

oX
ðlnðwÞÞ

� �
¼ oU

oX
: ð40Þ
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Using formula (30) for the complex valued function
CðtÞ ¼ o lnðwÞ
oX

ðX ðtÞ; tÞ; ð41Þ
we prove in [4] that the quantized Newton equation is equivalent to the fol-

lowing generalized non-linear Schr€odinger equation [4, Lemma 6, Section 5.2]:
�i2cm ic

�
þ aðtÞ

2

�
ow
oX

� �2
1

w2
þ i2c

o lnw
ot

þ icaðtÞ o
2w

oX 2

1

w
¼ UðX ; tÞ þ aðX Þ;

ð42Þ
where
aðtÞ ¼ ðd1=2þ X ðtÞÞ2 � ðd1=2� X ðtÞÞ2

2

 !
� i

ðd1=2þ X ðtÞÞ2 þ ðd1=2� X ðtÞÞ2

2

 !
;

ð43Þ
and aðX Þ is an arbitrary continuous function.

It is possible to obtain the classical linear Schr€odinger equation by impo-

sition a condition on the value of aðtÞ [4, Corollary 1]:

Corollary 1. If the function X ðtÞ is such that
aðtÞ ¼ �i2c; ðSCÞ
then Eq. (42) takes the form
i2cm
ow
ot

þ 2c2m
o2w
oX 2

¼ ðU þ aðX ÞÞw: ð44Þ
We can always choose a solution of (44) such that aðX Þ ¼ 0. In this case, when
c ¼
�h
2m

; ð45Þ
where �h is the Planck constant, we obtain the classical Schr€odinger’s equation
i�h
ow
ot

þ
�h2

2m
o2w
oX 2

¼ Uw: ð46Þ
We call condition (SC) the Schr€odinger condition in the following.
6.3. The Schr€odinger condition and fractional differential equations

From (43), we deduce that the Schr€odinger condition (SC) is equivalent to
ðd1=2þ X ðtÞÞ2 ¼ ðd1=2� X ðtÞÞ2; ð47Þ
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and
ðda
þX ðtÞÞ

2 ¼ 2c: ð48Þ
Hence, we are lead to the following problem:
Problem. Does there exist a continuous function satisfying
ðd1=2þ X ðtÞÞ2 ¼ ðd1=2� X ðtÞÞ2 ¼ C; ð49Þ
where C > 0 is a constant.

Using results from the previous section, we prove the following theorem:
Theorem 14. For all 0 < a < 1, the fractional equation
ðda
þX ðtÞÞ

2 ¼ ðda
�X ðtÞÞ

2 ¼ bðtÞ; ð50Þ
where bðtÞP 0 is a continuous function, has no solutions.
Proof. This follows easily from Theorem 12. Indeed, we have only two cases to
consider:

i(i) da
þX ðtÞ ¼ da

�X ðtÞ ¼ �
ffiffiffiffiffiffiffiffi
bðtÞ

p
,

(ii) da
þX ðtÞ ¼ �da

�X ðtÞ ¼ �
ffiffiffiffiffiffiffiffi
bðtÞ

p
.

For (i), we obtain daX ðtÞ ¼ �2
ffiffiffiffiffiffiffiffi
bðtÞ

p
and for (ii), we have daX ðtÞ ¼ �i2

ffiffiffiffiffiffiffiffi
bðtÞ

p
.

By Theorem 12, as
ffiffiffiffiffiffiffiffi
bðtÞ

p
is again a continuous function, we have no solutions

to (50). h
6.4. Feynman–Hibbs characterization of quantum paths and generalized

Schr€odinger equations

As a consequence of Theorem 14, we cannot assume that aðtÞ satisfies the
Schr€odinger condition (SC). This means that, in the scale relativity point of

view, the equation of motion of a free particle is a generalized form of the

Schr€odinger equation, like (49).
In the following, we precise the form of (49) by exploring the most general

form which can be assumed for aðtÞ, compatible with standard results of

quantum mechanics.

In [6], Feynman and Hibbs characterize typical paths of quantum
mechanics. They prove that they are continuous everywhere non-differentiable

curves for which a quadratic velocity can be defined. In our framework, the

Feynman–Hibbs characterization of quantum trajectories is then defined by:
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Feynman–Hibbs characterization: A function X ðtÞ is said to satisfy the

Feynman–Hibbs condition if
lim
h!0þ

ðX ðt þ hÞ � X ðtÞÞ2

h
¼ lim

h!0þ

ðX ðtÞ � X ðt � hÞÞ2

h
: ðFHÞ
The Feynman–Hibbs condition (FH) has important implications in our

framework.

Lemma 8. If X 2 C1=2 and X satisfies (FH) then
ðd1=2þ X ðtÞÞ2 ¼ ðd1=2� X ðtÞÞ2; ð51Þ
and the most general form for the Schr€odinger condition consistent with (FH) is
aðtÞ ¼ �ibðt;X ðtÞÞ; ðGSCÞ

where bðt;X Þ is a positive definite arbitrary function.

Proof. As X ðtÞ is 1/2-derivable, then by the generalized Taylor theorem [3],

we have
ðX ðt þ hÞ � X ðtÞÞ2 ¼ ðd1=2þ X ðtÞÞ2hþ oðhÞ;
ðX ðtÞ � X ðt � hÞÞ2 ¼ ðd1=2� X ðtÞÞ2hþ oðhÞ:

ð52Þ
As X satisfies (FH), we deduce that ðd1=2þ X ðtÞÞ2 ¼ ðd1=2� X ðtÞÞ2.
By definition of aðtÞ, we have under condition (FH)
aðtÞ ¼ �iðd1=2þ X ðtÞÞ2: ð53Þ

As a consequence, the most general form of the Schr€odinger condition is

aðtÞ ¼ �ibðt;X ðtÞÞ, where bðt;X Þ is a positive definite function. This concludes
the proof of the lemma. h

The generalized Schr€odinger condition (GSC) implies that we must study

the following fractional differential equations:
ðd1=2þ X ðtÞÞ2 ¼ ðd1=2� X ðtÞÞ2 ¼ bðt;X ðtÞÞ; ð54Þ
where bðt;X Þ is a positive definite function.

Several cases must be considered.

6.4.1. Independence

If b is independent of X , i.e. bðt;X Þ ¼ bðtÞ, we have the following possibil-

ities:

i(i) bðtÞ is a continuous function;

(ii) bðtÞ is discontinuous;
(iii) mixing of continuity and discontinuity;
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Case (i) is impossible. Indeed, the Theorem 14 applies, and we have no

solutions to the fractional differential equation (54).
Case (ii) cannot be avoid. However, we have strong constraints for the

function bðtÞ coming from physics.

Indeed, the Schr€odinger equation is a well-established equation of physics

for the dynamics of quantum particle in the non-relativistic case, in agreement

with experimental results. As a consequence, the function bðtÞ must satisfy the
following reality condition:
j bðtÞ � �h=m j 6 �; ðRÞ
where 0 < � � 1 is small parameter.

Indeed, even if the function bðtÞ is discontinuous, we cannot allow large

fluctuations with respect to the value �h=m leading to the classical Schr€odinger
equation in Eq. (42).

Then, we are lead to consider fractional differential equations of the form
ðd1=2þ X ðtÞÞ2 ¼ ðd1=2� X ðtÞÞ2 ¼ �h=mþ �P ðtÞ; ð55Þ
where 0 < � � 1 is a small parameter and P ðtÞ is a discontinuous function such
that �h=mþ �P ðtÞP 0.

For the same reasons as case (ii), (iii) leads to the study of fractional dif-
ferential equations of the form (55).

Assuming that the fractional differential Eq. (55) has a solution, we obtain

the following form for the generalized Schr€odinger equation, compatible with
the Feynman–Hibbs condition (FH) and the reality condition (R):
i�h
ow
ot

þ
�h2

2m
o2w
oX 2

þ �Pðt;wÞ ¼ Uw; ð56Þ
where the perturbation P is given by
Pðt;wÞ ¼
�h
2m

P ðtÞ o2w
oX 2

"
� m

ow
oX

� �2
1

w

#
: ð57Þ
Many works deal with generalization of the classical Schr€odinger equation by

adding non-linear terms in order to solve some specific problems of quantum

mechanics such as the collapse of the wave function (see [11,13] for example) or

the cat paradox. However, the non-linear terms are in general ad hoc and

justified a posterior.

In our case, the non-linear Schr€odinger Eq. (56) has a specific non-linear
term (57) which is fixed by the Feynman–Hibbs condition, the reality condition

and the scale quantization procedure coming from the scale relativity theory of

Nottale [10].
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It will be interesting to exhibit new phenomenon associated to this non-

linear term.

6.4.2. Dependence

If b is dependent of X ðtÞ, we cannot conclude. As in the previous paragraph,
we must satisfy the reality condition. As a consequence, we are lead to consider

a generalized non-linear Schr€odinger equation of the form (56), with a non-

linear term given by (57) where P ðtÞ is replaced by a composed function

P ðt;wðtÞÞ.

6.5. Further generalizations

Up to now, we have considered fractional differential equations with a

constant order of differentiation. From the physical view-point, this comes
from the Feynman–Hibbs condition (FH) which implies that this order is 1/2.

However, this is an averaged value. As a consequence, a better characterization

of quantum paths is the following:

Absolute Feynman–Hibbs characterization: A function X ðtÞ is said to satisfy

the absolute Feynman–Hibbs condition if
lim
h!0

ðf ðt þ hÞ � f ðtÞÞ2þ�pðtÞ

h
exists; ð58Þ
where 0 < � � 1 is a small parameter and pðtÞ is continuous function such that
p�ðtÞ ¼
1

2

Z tþ�

t��

pðsÞds ¼ 0: ð59Þ
Remark 8. This assumption is consistent with the special scale relativity theory
(see [5,10]). A prediction of this theory is that quantum mechanical paths must

have a variable fractal dimension (see [15]). As a consequence, we have ([4,

Theorem 2.4] and [15]) a variable H€olderian exponent which gives a variable

order of differentiation.

In this case, the non-linear Schr€odinger equation is more complicated and

we are lead to consider fractional differential equations with a variable order of

differentiation (see [14] for a first approach). It will be interesting to write a

detailed analysis of this case.
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Appendix A. A technical lemma

In [3], we have implicitly used the fact that
Ia
a;r � Da

a;r½f ðxÞ � f ðaÞ�ðxÞ ¼ f ðxÞ � f ðaÞ; ðA:1Þ
in the proof of the generalized Taylor theorem in [3]. This result is not true if

we replace f ðxÞ � f ðaÞ by an arbitrary function. However, in our case, a special
phenomenon occurs.

Lemma 9. Let f be a continuous function, 0 < a < 1 and a 2 R be a given real
number. We denote by Daf ðxÞ the difference Daf ðxÞ ¼ f ðxÞ � f ðaÞ. We have
Ia
a;r � Da

a;r½Daf �ðxÞ ¼ Daf ðxÞ; ðA:2Þ
for r ¼ �.

Proof. If F ðzÞ is an arbitrary continuous function, then we have (see [12, p. 71,

(2.113)]):
Ia
a;r � Da

a;rF ðxÞ ¼ F ðxÞ � ½I1�a
a;r F ðxÞ�x¼a

ðx� aÞa�1

CðaÞ : ðA:3Þ
Podlubny has proved (see [12, p. 75, (2.128) and (2.130), and Section 2.3.7])

that if 0 < a < 1, then the condition
½I1�a
a;r F ðxÞ�x¼a ¼ 0 ðA:4Þ
is equivalent to
F ðaÞ ¼ 0: ðA:5Þ
In our case this is trivial because Daf ðaÞ ¼ 0. As a consequence, using (A.3)

with F ðxÞ ¼ Daf ðxÞ, we obtain

Ia
a;r � Da

a;r Daf ðxÞ ¼ Daf ðxÞ: � ðA:6Þ
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