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Abstract

We consider hyperbolic tori of three degrees of freedom initially hyperbolic Hamiltonian
systems. We prove that if the stable and unstable manifold of a hyperbolic torus intersect
transversaly, then there exists a hyperbolic invariant set near a homoclinic orbit on which the
dynamics is conjugated to a Bernoulli shift. The proof is based on a new geometrico-
dynamical feature of partially hyperbolic systems, the transversality-torsion phenomenon,
which produces complete hyperbolicity from partial hyperbolicity. We deduce the existence of
infinitely many hyperbolic periodic orbits near the given torus. The relevance of these results
for the instability of near-integrable Hamiltonian systems is then discussed. For a given
transition chain, we construct chain of hyperbolic periodic orbits. Then we easily prove the
existence of periodic orbits of arbitrarily high period close to such chain using standard results
on hyperbolic sets.
© 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

We consider Graff tori of [13] three degrees of freedom initially hyperbolic
Hamiltonian systems. We extend the classical Birkhoff-Smale theorem for
hyperbolic points or normally hyperbolic tori to partially hyperbolic Graff tori: if
the stable and unstable manifold of a partially hyperbolic Graff tori intersect
transversaly, then there exists a hyperbolic invariant set near a homoclinic orbit on
which the dynamics is conjugated to a Bernouilli shift.
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Several authors, including Treshchev [20] and Holmes and Marsden [14], have
conjectured such a result. Difficulties are due to the partial hyperbolicity of the tori.
A particular case is studied by Easton [10].

Our proof is based on the following key results:

(i) if the flow on the torus is with torsion, then we have a result similar to the
classical A-lemma of J. Palis for hyperbolic points [6];

(i1) transversality of the stable and unstable manifold together with torsion of the
flow on the torus produce “hyperbolicity”;

(iii) the minimal dynamics on the torus allows us to localize a neighbourhood of
the homoclinic orbit where hyperbolicity exists (it gives the alphabet of symbolic
dynamics).

An immediate application of this result is the so-called Arnold diffusion [2,11].
Assuming the existence of a transition chain, we prove the existence of a ““dual”
chain of periodic hyperbolic orbits, replicating the given chain of partially hyperbolic
tori. Then, we substitute the task of tracking and studying the dynamics near a
transition chain by applying the well-known facts about the dual chain of periodic
hyperbolic orbits, being mostly the consequences of the A-lemma. We then prove a
statement of Holmes and Marsden [14]: there exists periodic orbits of arbitrarily high
period close to the chain.

Application of these results to the computation of Arnold diffusion time is given
in [8].

This paper is organized as follow: In Section 2, we recall some known results about
partially hyperbolic tori and Poincaré map associated to a section of these tori. In
Section 3 we state our main result: the dynamics near a homoclinic partially
hyperbolic tori is conjugated to a Bernoulli shift with an infinite number of symbols.
As a consequence, we prove the existence of homoclinic hyperbolic periodic orbits.
We then discuss some consequences of these results for the problem of instability in
Hamiltonian systems. We prove that given a transition chain there exists periodic
orbits of arbitrary high period along the chain. In Section 4, we prove our main
result.

2. Graff tori
2.1. Graff tori

We denote T = R/2nZ and O,(x;y) a function of order ||x||", parametrized by y.
Let H,(J,$,p,q) be a three degrees of freedom initially hyperbolic Hamiltonian

system (see [4,18]), where (J,¢,p,q)eR> x T?> x R x T. We denote by ®(z,x) its
flow.

Definition 2.1. A Graff torus is an invariant partially hyperbolic torus for which
there exists a neighbourhood 7 (u) such that the Hamiltonian takes the normal form

H,(0,1,s,u) = ol + Jsu+f(I,su) + ug(0,1,s,u), (1)
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with f(I,su) = O(I,su), and g¢(I,0,s,u) = O>(I,su;0,1,s,u), 4>0 and weR>
satisfies a diophantine condition

.| = Vkez*\{0}, (2)

7

‘k‘r’

with © > 1, where V' (u) is of the form
Vi) ={(0,1,5,u)eT*> x R* x R x R| |s| <K, |u|<r, [I|<wu},

with x > 0.

Niederman [18] and Eliasson [12] have proved that this normal form is valid for
diophantine hyperbolic tori of initially hyperbolic Hamiltonian systems.

2.2. Poincare section

As w is non-resonant, there exists (see [16]) a section S and an analytic coordinates
system (0,p,s,u), 0T, peR, (s,u)eR* in which the torus is given by T =
{(0,p,5,u)eTXRxRxR|p=0,s=u=0}, and the Poincaré¢ map has the form

1(0,p,5,u) = (0+0(p), p, 25, 2™ "u) + (0, p,5,u), (3)
where A< 1, v and r are analytic, and r = O,(p, s, u) in a domain
V) =1{(0,p,5,u)eT> x R* x R x R| |s|<x, |u|<x, |p|<xu}.
We have also that v(p) = v + v p, where v satisfies a diophantine condition

VkeZ\{0}, |k.v| > IZ\’ (4)

and Vi ?50

3. Symbolic dynamics and Arnold diffusion
3.1. Symbolic dynamics and Graff tori

Let H,, be a three degrees of freedom initially hyperbolic Hamiltonian systems and
T a Gralff torus of H,. We denote by s the energy level containing 7" and S the
Poincaré section associated to T defined in Section 2.2.

3.1.1. Assumptions
It is assumed that:
(h;) The stable and unstable manifolds of 7 intersect transversaly in .
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Remark 3.1. This condition is generic [15].

We denote by I' a homoclinic orbit to 7. The homoclinic orbit I" intersects the
section S in p™e W*(T) and p~ e W¥(T). We note that p* = (0*,s,0,0) and p~ =
(07,0,0,u). We define two neighbourhoods of p™ and p~ as

B+:{|0_0+|<5+7 ‘S_S+|<5+7 |p|<5+/.l, |M|<5+}7

B ={l0—07|<o_, Is|<o-, lp|<d_p, Ju—u|<5},

where 0. > 0, 6_ > 0 sufficiently small, independent of u.
Transversal map. Let t: S— [0, o],

1(p) = sup{r > 0| D(s,p) e A\S for 0<s<t},

where @ is the flow associated to the Hamiltonian Xy.

We define the set & = {peS|t(p) < oo }. We can suppose J; sufficiently small to
have Bt =Z and B~ =f(E). We denote D, = {ge Bt : f"(q) e B~ }. We also choose
and J_ sufficiently small such that B~ nB" = (. Then, we have D" D" = () for
n#m. We denote D = J,>, Dy

The map & : D— B~ defined by Z(q) = f"(q) for all geD,, will be called the
transversal map.

Homoclinic map. Let A be the homoclinic map from B~ to Bt defined by A(q) =
®(q,0(q)), where a(q) = inf{r > 0 | ®(¢,q) e B*}. It is defined on a neighbourhood
of p~ which is included in B~. The homoclinic map A4 : B~ — Bt has the form

A(x) =p* + Ih + Ayh,

where h = x —p~, Il = D,-(A) and A, is the term of order >2.
(hy) (transversality) We assume that the matrix II, written on the basis
(eg, €5, €p,€,) is given by

S R O =
o O Q O
oS = O O
QU O > O

where (a, b, c,d) e R* such that ad — bc = 1, o€ R with a0 and o of order i, where
k > 0 is a constant.

Remark 3.2. Our assumption on the form of II is based on our computation of the
homoclinic map in the Arnold’s example [5, Chapter 2], where this form was
obtained.
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® Let A)(x) =p" + I be the linear part of A. We have TA; =II. We denote

w?(T) = W*(T)n B’ and for a given manifold 4, 4° = AnB°, 6 = +, & =s,u.

For u=0, we have II(T\w, (T)) = T,w, (T) for xew, (T). Moreover, if
A | WHT) in B~, then II(T A7) + Tp,wy (T) = Ty,yM. Hence, for u =0, the
choice of the matrix I1 expresses the coincidence of the stable and unstable manifold
of the torus in the invariant set I = const.

For u#0, we have II(Tw, (T)) + Tp,ywy (T) = T4, M, which expresses the
transversality of the intersection between the stable and unstable manifold of the
torus.

® We do not know the generic form of the matrix II.

(h3) (control of the remainders) We assume that
r=0y(I,su) and Ay = Oy(I,su). (5)

Transition map. We define the set 2 by 2= {geB"|¥(q)eB"}, where the
transition map ¥ : 2— BT is given by ¥(q) = A<F(q).

3.1.2. Main result
We need some notations to state our theorem.
Alphabet. We define the alphabet set by

o = {0 >n=n| |07 — 0 +nv|<dY,

where ny = y5:(1+5)1 by [3], with > 0 a constant such that 5 g%.
Window. Let X = (0,S)eT xR, Y =(R,U)eR xR, ||.||, the supnorm, and %4
a ball of centre 0 and radius 1. We denote for any ne .7,

H,={Z= (0,5 R U)

eETXRxRXRI||U—-u'u"|<i", |R|<"},

and = J,., #». We define the window [1,10]1 #": B— B+ by #(Z) =p* + W.Z
and
u 0 ﬂK+la—] 0
0 0 bud™!
W It It ’
0 0 ‘uK+1 0
0 0 0 L

with x > 0 such that g*a~! = 1°, where & > 0.
We denote by & : B+ % the window map defined by & = W oWy’
Then we have the following theorem:
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Theorem 3.1 (Symbolic dynamics for a Graff torus). For u sufficiently small, the map
& possesses an invariant hyperbolic set

I1={Zec2|¥"(2)eD, VnelZ}

such that L\, is topologically conjugated to the shift on the alphabet </ . Then, there
exists a homeomorphism, ¢, such that the following diagram commutes:

I 2 1

ol l9,

Z‘.v/ N Z-Q/

where ¥ =[[7_,, </ and o is the shift mapping on this space.
The scheme of proof of Theorem 3.1 is given in the next section (the formal proof is
given in Section 4).

Remark 3.3.

e It must be emphasized that hyperbolicity of the invariant set is important.
Indeed, these sets are stable under small perturbation while the persistence of the
partially hyperbolic tori is subjected to constraints of arithmetical nature.

e Theorem 3.1 is also true under the weak assumption that w in (1) is non-
resonant.

3.1.3. Scheme of proof

The proof is divided in three steps. The first is to compute the window map .¥. We
then focus our interest on the linear part of .. We prove that this linear map is
hyperbolic. The main point is that the transversality coupled with the torsion of the
linear flow on the torus create hyperbolicity. We then prove the existence of symbolic
dynamics for this map using classical results on criterion for Chaos in the hyperbolic
case. Third, we prove that the remainder is kept under control in a small
neighbourhood of the torus. This control of the remainder is made possible via the
explicit computation of the remainder of the normal form made by Eliasson [12] and
Niederman [18].

(a) Computation of ¥: Let Z=(X,Y)e%, the map &£ is defined by ¥ (Z) =
g+ L.Z+ R(Z), where ¢ = (0, "s* Jud, a(0" — 0~ +nw)/p, cA's™/u),

0 0 —a 0
1= 0 Ad! 0 b/ d?
o™ 0 2 + anvy 0
0 e 0 cbd ' 2"+ di"

and R is of order 2 in Z.
This map is hyperbolic. Indeed, in the hyperbolic direction, we have eigenvalues
which have a modulus # 1. In the angular and neutral directions, the eigenvalues f
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are solution of the following equation > — (2 4 anvi) + 1 = 0, and are of modulus
#1 if and only if «#0 and v; #0.

(b) Criterion of Chaos for [(Z) = g+ L.Z: This part is essentially technical. We
prove that we have the stable and unstable cones conditions (see [22]). This follows,
from a geometrical point of view, from the A-lemma for partially hyperbolic tori
whose flow on the torus is with torsion (see [6]).

(c) Control of the remainder: Parts (a) and (b) allows us to prove that the linear
map / possesses an hyperbolic invariant set .# on which the dynamics is conjugated
to a shift on an infinite number of symbols. Several difficulties arise due to the non-
compactness of the set of symbols .o7. Indeed, the hyperbolic invariant set .# is then
non-compact and we can not apply classical perturbation results for compact
hyperbolic invariant set. The usual way to deal with this problem is [17, p. 101] to
compactify the alphabet .o by taking into account the co symbol. The invariant set
# is then compact. But, this set is no longer hyperbolic since it contains the invariant
torus 7 which is not hyperbolic (this is not the case for Moser’s proof of the
Birkhoff-Smale theorem for hyperbolic point in R?). However, we prove directly, via
simple computations, that the remainder of the map / does not destroy the
hyperbolic invariant set .#. This is due to a good behaviour of the normal form
obtained by Eliasson [12] and Niederman [18] for 1-hyperbolic tori.

3.2. Transition chains

3.2.1. Dynamics around a transversal homoclinic Graff torus
For ne.«/, we denote by (n) the infinite sequence {...,n,n,n,...}. Let p(n) =
¢~'(n) be the associated fixed point of & in I by ¢~'. We obtain

Vol (p(n)) = 7 (p(n)), (6)

then % (p(n)) is a fixed point of the transversal map in the Poincaré section.
(hy4) The Poincare map f defined on S can be extended to a neighbourhood of the
homoclinic orbit I" such that, the homoclinic map A is given by

A=f7

where d is an integer.

This assumption is already made by Moser [17]. The integer d e N is related to the
homoclinic time.

Under (h4), we deduce that the orbit through # (p(n)) is periodic of period n + d
(for the system). We denote by O, this periodic orbit. We have p(n)—p" when
n— + .

We then have the following corollary of Theorem 3.1.

Corollary 3.1. For all ne o/, the periodic orbit O,, is hyperbolic, with a two dimensional
stable (resp., unstable) manifold, denoted W*(0O,,) (resp., W"(O,)).
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Proof. This follows from the hyperbolic structure of the invariant set /. [

3.2.2. Dual chain of hyperbolic periodic orbits

Let 7 = (T}),_,  y be a family of Graff tori such that the unstable manifold
W"(T;) intersects transversaly with the stable manifold W*(T};;) in #. Moreover,
we assume that for all ie {1, ..., N}, W*(T;) and W*(T;) intersect transversely in .

For all torus 7; of the family, we denote by S; its section, /#; a homoclinic orbit to
T;, pf (resp., p;) the intersection between /; and W*(T;) NS (resp., W*(T;) n S) and
B/ (resp., B;) a neighbourhood of p;" (resp., p;’) defined as in Section 3.1.1.

For each i =1, ..., N, we denote by O! a periodic hyperbolic orbits obtained by
corollary A near T;.

Let y; be a heteroclinic orbit between the tori 7; and T}, and I'; : Bf _’Bi++1 the
heteroclinic map. Let 4 be a torus of the family .7 or a periodic orbits obtained by
Corollary 3.1. We denote wf‘”(A) = W<(A)nB? for ¢ = s,uand ¢ = +.

We assume that:

(1) the heteroclinic orbit y; intersects B; (resp., Bf,,) in a point g; € W*(T;) (resp.,
qi € W*(Tis1)):;
(i) there exists a diffeomorphism Z¢ : wi(Ty1) - w; "’ (T;) for o = +.

Remark 3.4. Assumptions (i) and (ii) are verified in examples using hyperbolic KAM
theory.

Proposition 3.1. Under (i) and (ii), there exists a family of periodic hyperbolic orbits
0= (0)),_, ynear I such that W"(0O;) intersects W*(Oj1) transversaly in .

i=1,...,

Proof. It follows from the hyperbolic structure of I that w?’J’(O;) is a graph of an
analytic function &! over wf‘*(T i), for p sufficiently small. Moreover, for n
sufficiently large, there exists two constants C; and C,, independent of p and n, such
that sup, .z, [&y (X)|< Cru™ A" and sup o+ () D, ()| < Cop 2", by definition
of #,. Then, w}""(0!) and w}™(T;) intersect transversaly in # for n sufficiently
large.! By the A-lemma (see [6]), there exists k€ N such thatfk(w?"J’(Oj;)) is as close as
we want to w! (7;) in C! topology, for k sufficiently large. The image of
SE(wi™(0!)) and wi"™ (T;) by I'; are then as close as we want in C! topology in By, .

We have also w}|(O!) as close as we want to w|(Tix1) in C' topology for n
sufficiently large. As w{{(7;) and w} | (T}.1) intersect transversaly in #, we deduce
from (i) and (ii) that w', (Oi™") and I';(f*(wi"" (0}))) intersect transversaly in #". We
conclude the proof by induction. O

"By the persistence lemma proved in [7], as the angle between w{"*(T;) and w}"*(T) is of order i, we

must have n>m2g§7m)log (-
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The existence of orbits shadowing the chain follows easily from the standard A-
lemma of Palis (see [19]).

Corollary 3.2. Let pe W3(0y) (resp. ge W¥(Oy)) and U (resp. ") be an arbitrary
neighbourhood of p (resp. q), then there exists trajectories £(t) and a real T > 0 such
that £(0)eWU and E(T)e V.

3.2.3. Holmes—Marsden conjecture

In [14], Holmes and Marsden discuss, in a heuristic paragraph about
“Nonintegrability and Arnold diffusion” (Section 3, pp. 672-673), dynamical and
analytical consequences of the existence of a transition chain. One of their conjecture
is, among other things, that “‘since two-way transition chain can be chosen, we can
find periodic motions of arbitrarily high period close to such chains, just as in the
standard two-dimensional horseshoes example” [14, p. 673]).

In this section, we prove this conjecture using the dual chain of hyperbolic periodic
orbits. We need some definitions.

We say that there exists periodic orbits of arbitrary high period if for any PeR,
there exists a periodic orbits of period P with P > P.

Let pe W*(T)) (resp., ge W*(Ty)), and U (resp., V) be an arbitrary neighbour-
hood of p (resp., ¢). We say that there exists periodic orbits of arbitrarily high period
close to the chain, if there exists periodic orbits of arbitrarily high period denoted by
(1), such that EnU#0 and EnV #0, where ¢ = {&(1); e R}.

We have the following corollary of Proposition 3.1:

Corollary 3.3. There exists periodic orbits of arbitrarily high period close to the chain
7.

This follows from Proposition 3.1 using standard results on hyperbolic set, as
developed by Alekseev [1] and Easton [10].

4. Proof of Theorem 3.1
4.1. Reminder about symbolic dynamics

We recall some basic results about symbolic dynamics and criteria for Chaos as
exposed by Wiggins [21, p. 108—150]).

We consider a map f: D—>R" x R” where D is a closed and bounded (n + m)-
dimensional set contained in R” x R”. We assume that f is analytic.

4.1.1. Definitions and notations

We denote Dy (resp., D,) the set of xeR" (resp., ye R™) for which there exits
yeR™ (resp., xeR") with (x,y)eD. Let I, (resp., I,) be a closed, simply connected n
(resp., m) dimensional set contained in D, (resp., D)).
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Definition 4.1. A p, horizontal (resp., u_ vertical) slice, H (resp., V), is defined to be
the graph of a function h:I.—>R" (resp., v:[,—»R"), u, (resp., p_) Lipschitz,
0<p, <oo (resp., 0<p_< o), such that H= D (resp., V<= D).

Fix some p,, 0<u_<oo. Let H be a u, horizontal slice, and let J” = D be an m-
dimensional topological disk intersecting A at any, but only one, point of H. Let A,
ael, be the set of all u;, horizontal slices that intersect the boundary of J” and have
the same domain as H, where I is some index set. Let

Sy ={(x,y)eR" x R" | xel,, y such that, Vxe I, given any line L through (x,y)
parallel to the x = 0 plane, then L intersects the points (x, /,(x)), (x, hg(x)) for some
o, fel with (x,y) between these two points along L.}.

Then a u;, horizontal slab H is defined to be the closure of Sg.

Definition 4.2. The vertical boundary of a u, horizontal slab H is denoted 9,H and
is defined as 9,H = {(x,y)e H | xedI,}. The horizontal boundary of H is denoted
OpH and is defined as 9,H = 0H — 0,H.

Definition 4.3. Let H and H be p, horizontal slabs. H is said to intersect H fully if
Hc H and 0,Hc 0,H.

4.1.2. Criteria for Chaos in the hyperbolic case
Let S =N, and let H;, i>1 be a set of disjoint yu -horizontal slabs with Dy =
Ufil H;. We assume that f is one to one on Dy and we define

f(Hl)mI—Ij: I/jia VI7J€S
and

Hinf™"(H) =f""(Vi) = Hy, VijeS

We denote X = [, S. Let s€X, s ={...54, ..., 50, -..5n... }, we define the shift
map ¢: XX as [o(s)]; = Sit1.

Let # =Ujes Hy and 7" =J;;cs Vi, then [f(A)=7". Let z5=
(x0,¥0) €7 LA, the stable sector at zg, denoted S7, is defined as follows:

S;; = {(élo’nzo)eRn x Rm|

Mol Spp ol 3

The unstable sector at zy, denoted S_ , is defined as

Sz, = {(&a ) e R X R [ [ <

Nz}

We denote S, =U.cp S5, ST =U.,er S5, Sy =U.,cn S, and S, =
Uzoe"t/' S_:o
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We have the following hypothesis:
(A) Df(Sy,)=S, and Df'(S;)=S},. Moreover, if (&,n,)eS, and
Df(zo)(fZO,nZO) = (é_f(ZO),qf(Zo))eSﬂZO), then we have

M7z >p! 12, -

Similarly, if (¢.,,n.,) eSS and Df '(z0) (¢, m,,) = (&r1z0)s My1(20)) €51, then we
have

“Né:,

|éf"(zo)|>:u

)

where O<p<1—p_pu,.
We denote  a; = [0/l [[(0A) I, aa = (1=[IoA @A) ), a3 =
104511 11(8/2) "], and

al, — axp, + a3 <0, ()

- [l@s)"|
10 1111(@,f2) I

(%)

+

asp’ — arp_ + a; <0, (%)
1= [[oAll
Bo<—F * %
Dl e
O<p pu_<1. (55 %)

(B) H;, i=1 are u, horizontal slabs with u, satisfying (%) and (* *). For all i,jeS
such that Vj; is a u_ vertical slab with pu_ satisfying (), (##), and (= ).
Moreover, we require 0, V}; < 9f (H;) and ) Vii) c0,H;.

We have:

Theorem 4.1. If f satisfies assumptions (A) and (B), then it possesses an hyperbolic
invariant set I, I< Dy, on which [ is topologically conjugated to the shift on the
alphabet X.
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4.2. Preliminaries

4.2.1. A remark on W
We explain the choice of #°, made in Section 3.1.2. The role of the window map is
to “simplify” the geometry of the problem, in order to have a clear understanding of
the set of horizontals and verticals on which the symbolic dynamics is constructed.
Let #'(Z) = p™ + WZ, where W is a matrix to compute. We want that W ensures
the following conditions:

(i) For Ze %, we have W (Z)e B".
(i1) The horizontals of #~ are parallel to the tangent plane of the stable manifold in
B*.
(i) The image of a vertical of % by A~! is parallel to the tangent plane of the
unstable manifold of the torus in B~.

Conditions (ii) and (i) implies that ¥ can be chosen as
P2 @ Q2
P33 P4 43 44
W = , 7
0 0 'uh’+l 0 ( )
0 0 0 u

where p; and ¢; are unknown constants.

Leteg = (0,0,1,0), ey = (0,0,0, 1) and for a matrix M and a vector V', we denote
by (MV), the x-component of the vector MV. Condition (ii) gives the following
constraints:

(I~ W (er)) g = 0,

(1T~ W(er))s = 0,

(™' W (ew))g =0,

(I W (ev))s = 0. (8)
We then obtain

—ag1 +,uK+l :0a
dVC]3 = Oa
—ugr = 07

dvqs — by =0. 9)
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Hence, the matrix W has the form

popr w0
P3 D4 0 bud™!
0 0 MK+1 0
0 0 0 u

W= (10)

We complete the matrix W by requiring it to be invertible. For example, we can take
p1=u,pr=0,p3 =0, ps = pn. We then have the form of W used in Section 3.1.2.

4.2.2. Preliminaries
For ze D,, we have Z(z) = (nv,0,0,0) + Fz + r(z), where

1 0 my 0
07 0 0

F= (11)
0 10
00 0 2"

and r is of order 2 in z.
We have the following lemma:

Lemma 4.1. Let Z = (X, Y)eR? x R*e #,, ne .o/, then, we have W (Z)eD,.

Proof. For Ze #,, we have %' (Z) = (0",5,0,0) + W.Z. We deduce that

0" + po + o R
5T+ uS +bud'U
W(Z) = IR . (12)

nU
We remark that #°(Z)e B*. Hence, we have "% (Z) which is equal to

0" + u® + muH'a 'R+ nv + nv 'R
A'(st 4+ uS + bud='U)
ﬂK+1R
AU

11w (Z) = (13)

We denote by z the point f"o% (Z). As for Ze #,, we have |U — 2"u~'u=| <" we
obtain that z = (0, p,s,u) satisfies |u —u~|<u. Moreover, we have |p|<u**! and
|s|<p as long as 2"|sT|<u and A"|bd~!| < .

We have 0 — 0" = (0" — 0~ +nv) +u(0 +uo 'R +nviR). As |R|</", and by
definition of the alphabet .7, |0 — 0~ +nv| <", we have |0 — 0" |<5_. O



282 J. Cresson | J. Differential Equations 187 (2003) 269-292

We are now ready to compute the window map ¥ :%— 4% defined by ¥ =
ant 25

Lemma 4.2. We have for Ze#,, L (Z)=q+LZ+ R(Z), where q=
(0, 4"s" Jud,o(07 — 0~ +nv)/u,ci"s™ /n), and

0 0 —a e 0
0 td! 0 2"b [ d?
L= 46/ (14)
o™ 0 2 + anv; 0
0 A 0 chd ') +d)"

and R is of order 2 in Z.

Proof. We have for Ze #),

1 0 uf(nvy+a!) 0
o X 0 bi*d~!
FoW =yu (15)
0 0 ue 0
0 0 0 A"

By composition with the linear part of the homoclinic map, we have

10 w(mv+al) 0
0 al 0 bd )" 4+ b7
HoFoW = u! . , ¢ * (16)
o 0 we(avy + 2) 0
0 ci" 0 cbd=' 2"+ di "
As
1 0 —o! 0
0 1 0 —bd!
W=y B : (17)
00 u* 0
0 0 0 1
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we obtain that the linear part of the window map is

L=WSIloFoW

0 0 — ot 0
0 d'» 0 bd=2)"
= : (18)
o 0 onvy + 2 0
0 cA" 0 chd=' )" +di"

which concludes the proof. [J
The following lemma illustrates the transversality-torsion phenomenon (see [9]).

Lemma 4.3. The matrix L is hyperbolic if and only if «#0 and vy #0. Moreover, its
eigenvalues are given by

Li~di™", L~d™ 2", B~onvy, Iy~ (onvy)”
for n sufficiently great, and p sufficiently small.
Proof. The characteristic polynomial of L is given by
P(x) = (x* — x(omv; 4 2) + 1)(x* — xa(n) + 1), (19)

where a(n) = al* 4+ d\™".
We first study the second factor of this polynomial. The eigenvalues are given by

n )\.
xy = G EdT) +d L1 - 4@+ aiy ), (20)

So, for n sufficiently large, we have

(2 o
- 2 T (ak - diy?

so that we have two hyperbolic directions, whose Lyapounov exponents are (up to
negligible factors), x, ~dA™" and x_ ~d~'J".

For the first factor, the eigenvalues are given by

1
xy =1 +%+2( 2(nv1)? + donvy) /2. (22)

We see that if « = 0 (or v; = 0) then, we have x, = 1.

If «#0 and v;#0, we obtain two hyperbolic directions whose Lyapounov
exponents are of order 2 + t(nv;) ' 4 anv; and (anv;)~", for n sufficiently large and
w sufficiently small. This concludes the proof of lemma 4.3. [
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4.3. The linear case

We prove that the linear part of ¥ satisfies assumptions (A) and
(B). As a consequence, it is conjugated to a shift automorphism on the
alphabet 7.

We denote [(Z) = (1(Z),(Z)), where [;:#—R> is defined by [(Z)=
gi+Li.Z, i=1,2, with ¢, = (0,2"s"(ud)™"), o = ((07 — 0~ +m)u !, eA"sTu™"),

and
0 0 — o ! 0
L = , 23
: (0 rd-t 0 /l”bd2> (23)

o™ 0 24 onv 0
L, = . 24
: ( 0 e 0 chd "+ di" (24)

4.3.1. Estimates

We have
0 0 2 + anvy 0
oxlh = , Oyh = 25
o (o i”d1> e ( 0 cbdlxl”+d/1‘"> (25)
and
Kap—1 —K
—u*o 0 o 0
oyl = , Oxh = ) 26
i < 0 mw) e ( 0 c)f’) (26)
We deduce the following estimates:
lloxh|| = |d~"|2",
1@yR) || = (2+ omvy) ™! (27)
and
Oyl = wra",

Oxall = o, (28)
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4.3.2. Condition (A)
We denote by

S7(p) = {(vx(p), vy (p) €R? x R oy (p)| < [ox ()1},
S7(p) = {(vx(p), vy (p) € R* x R ox (p)|<p” |ov (p)]}, (29)

with vy = (ve,vs), vy = (vr, Vu), the stable and unstable sector at p, respectively (see
Section 4.1).
We denote

() = L(vx, o). (30)
We have
Uy = (U, vs) = (=1 g, 2"d og + 2'bd Pvy),
vy = (U V)
= (" ve + (2 + anvy)og, cA"vs + (chd ™' 2" 4+ d2 " vy). (31)
(a) L(S,)cS,. We have
[y = wa " ug| + |2"d " vs + A"bd vy,
[y | = o™ v + (2 + anvy)vg| + [ vs + (cbd ™' )" + d) vy (32)
We assume that |vy|<u~|vy|. Then, we have
[0y | = (2 4 anvy o |ve (2 4+ anvy) ™" + o Fog]
+ |d|27"d ™ 2P s + (cbd 202" + 1)vy|
> o ool + [d13 " |ou] — 3l |, (33)

where 0 = max((2 + anvy)oap™™, |d|).
As

|y | <uo for] + 2"1bd 7 Joy| + 2"|d~[us], (34)

we deduce that for u— 0, we have |v/y| — 0. Hence, for u sufficiently small, we have, if
lou|#0,

vl = vl (35)
Then, using (33), we obtain that

[yl Z1d|27" vy | = alvy| = oy |47 (|d] = 2A"). (36)
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We deduce that for u sufficiently small,
[Vl <22 | vy - (37)
We must have
22"d| " < (38)

which is the case for u sufficiently small.
If |vy| = 0, then, we have

Ol el N s !

[vy] el |us| + (2amvy)|vr| — o~ ve 2 4 omv

for u sufficiently small. Then, we must have

K%il

- Iz
>2 -
#= 2 + anvy

Remark 4.1. Here, we have used the torsion in order to satisfy the unstable cone
condition. This computation must be compared with the proof of the A-lemma in [6].

(b) L*I(S;D)cS}.
® We assume that
lor| + [ou|<u™ (lve| + lus]). (39)

We denote for v = (vy,vy) €S,

L' = (vy,vy) (40)
with
oanvy + 2 0 weo! 0
0 bd=' )" +di " 0 "bd
- ¢ + A (1)
—apu" 0 0 0
0 —c" 0 d-')"

We deduce that



J. Cresson | J. Differential Equations 187 (2003) 269-292 287
/ 1o
vy = (v, Us)
Ka—1 b n 1—n n b
= ( (anv; + 2)ve + 10" vg, CE)L +dA™" Jvg — A ﬁvy ,

n

vy = (Vo V) = (—op " ve, —cA"vr + %UU). (42)

We have
V| = |(anvy 4 2)ve + o og| + |(cbd ' 2" + 27" d)vs — A"bd vy,
> (anvy + 2)|ve| — uoaor| + A7"|d + cbd ' 22" ||vs|

bld2|vy], (43)

)"

which gives using (39),

n
V| = (anvy + 2)|ve| — woa™! +=—|d + cbd ™' 2*"|(|vr| + |vv])

wt
— 2"bld oy,
> (anvy + 2)|ve| + |vg| ( —|d + chd™ )" — ,u"oc1>
u
2" oy amip e
- (M+ |d + cbd ™' 2*"| — J"|b|d 2)|UU|. (44)

As pfo! = 1°, we have for u—0, o' - 0. Moreover, 2" -0 for u—0. Then, for u
sufficiently small we have

—n

2ut

V| = (anvy + 2)|ve| + |vr d + chd ' )"

—hn

—192n
2'u+d+cbd A

+

vy . (45)

For u sufficiently small, we have onv, + 2<§%|d + cbd‘]lz"|. Hence, we obtain
|0 |= (anv1 +2)(|vel + |vr| + |v]). (46)
We have also that

[yl <ou ™ vel + [c|2"jor] + 2"[d| ™ Jvu]. (47)
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As op* <anvy + 2 for ne.o/, and 2" -0 when u—0, we deduce that
[y | < (amvy + 2)"! [y . (48)
We conclude that L~!(S}.) =S}, if
(onvy + 2)71 <ut, (49)

which is the case for u sufficiently small.
(c) Consequences. We can take

Kn—1

= (omgvy +2)7", u = 2#“”0‘)1, (50)
in order to ensure the previous conditions.
Moreover, we have for ve S,
|y =B ox ], (51)
and, for ve ST,
1= 7" |0y, (52)
where f is given by
B! = max(anv, + 2,31 %o (2 4 anvy)). (53)
We have
e = 2u a (omgvy 4 2) 72 (54)

We note that 1 — u"u~—1 and a—0 when u— 0. Hence, for u sufficiently small, we
have

0<B<l —utu. (55)
This concludes the proof of condition (A).

4.3.3. Condition (B)
It is easy to picture the sets #, and V,,, = [(A#,) N H# , and to verify condition

(B).
Of course, for u sufficiently small and n > m, we have
Hn NIy =0, (56)

so that the horizontal slabs are disjoint sets.
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We recall that V,,, = I[(#,) U A ,,. We denote for Ze A, [(Z) = (Z))), so that
0 = — o 'R,
St = "5t (ud) ™" + "Sd™" + bd"2"U,
R = op D07 — 07 + nv) + o O + a(nv) + 2)R,
U =c"s" " —du ' +cd"S + ebl"d™' U+ d)"U. (57)
As Z=(0,S,R,U)eAH,, we have |R|< 1", and as a consequence
@) | <ua 2", (58)

From |@| <1, |R|< A" and au™" = u°, with 6 > 0, we deduce that the set spanned by
R}, denoted by I is such that

Ix o[0,1] (59)

Moreover, as |d|27"|U — 2"u~u~!|<|d|2™", we deduce that for p sufficiently small
the set Iyy spanned by U, when Z varies in ', is such that

Iy o10,1]. (60)
Moreover, we deduce that
S| — 25T (ud) ™" = "d| ' |bU + S|. (61)
As |U| <"+ 2"u'u and |S|< 1, we obtain
1) — 25+ (ud) | <3| (62)
We then deduce easily that the vertical slab V,, is defined by the constraints given by
I(A#,) for O, S and by #,, for R and U.

This remarks allows us to prove, without any computations, that the vertical
boundary of V,,, belongs to the boundary of /(H,), so that we have the inclusion

Oy Vi < OL(H y). (63)

The proof that I71(8,V,,) 2 0,# ,, follows easily in the same way.
We have

ap = o~ (24 anvy) !,
a=1—|d " 2"2+ anv) ™",

ay = ap* (2 + oanvy) . (64)
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We deduce that for p sufficiently small, in order to satisfy conditions (*) and (), of
assumption (B), we must have

2K
% (2 4 anvy) 2 <p, <12 + anvy) 2,

for ¢ = +. This inequality is satisfied, by definition of u, and u_. A simple
computation proves that conditions (# ) and (* ), are satisfied.

4.4. Control of the remainder

We denote by .#, the hyperbolic set obtained in the previous section for /. By
Theorem 4.1, there exists a homeomorphism /4y such that the following diagram

commutes
fo = ! ef()

hol Lho- (65)
Z_(,/ = Z_v/

It remains to prove that the hyperbolic invariant set .# persists for .. The strategy,
is first to estimate the remainder of .#. Using the Eliasson—Niederman normal form,
we obtain for each horizontal slab J#, the following control lemma (see Lemma 4.2,
Section 4.2.2 for notations).

Lemma 4.4 (Control lemma). For each point Z e #,, we have
IR(Z)|| < C*", ||DR(Z)|| < Cud", (66)
where C > 0, C > 0 are constant.

Proof. The first step is to control the remainder in the normal form domain. We have,
using notations from Section 1.2, # (z) = (nv,0,0,0) + F.z + r(z):
Lemma 4.5. For Ze#,, we have

@ |lr(w (2)]|<er™,
Qi) || Dr(w(2))||<ci®.

Proof. This follows easily from the Eliasson—Niederman normal form. Indeed, the

remainder depends only on the product (su)2 and I°. So, by definition of the
alphabet .o/, we deduce Lemma 4.5. [

The second step is to control the remainder when the trajectory leaves the domain
of the normal form. We have

RZ)=0Or(W.Z+p"))+(f(W.Z)—p7)
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by definition. Using assumption (h3), and point (i) of Lemma 4.5, we deduce that
|R(Z)||< C2*" for Ze #,, where C > 0 is a constant. As,

DR(Z) =W (Dr(W.Z+p"))+ W f(W.Z).DA(f (W.Z) — p~),

it follows by a simple computation and point (i1)) of Lemma 4.5, that
|IDR(Z)||< Cui", where C > 0 is a constant. [J

In order to prove the persistence of I, we must prove that for each ne.«,
conditions (A) and (B) are satisfied. We remark that, as long as the map f is fixed in
Section 4.1, conditions (A) and (B) are stable under small perturbations. For each
ne.of, | is fixed. In this case, we can compute the maximal size of the perturbation
allowed in J#,,. By classical results on perturbations of hyperbolic map, we have that
the mapping & satisfies conditions (A) and (B) if, for each ne .o/,

sup ([[R(Z)||,|IDR(Z)||)<2"*°

ZEH

with 6 > 0.
By the control lemma, this is the case. Then, . satisfies conditions (A) and (B).
This concludes the proof of the theorem.
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