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Abstract

The current paper aims at finding out a Lagrangian structure for some par-
tial differential equations including the Stokes equations, the fractional wave
equation, the diffusion or fractional diffusion equations, using the fractional
embedding theory of continuous Lagrangian systems.
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1. Introduction

This paper is an introduction to the framework of embedding theories of
Lagrangian systems initiated in [6]. We review results about applications of
the fractional embedding procedure [7] to partial differential equations.

Many classical partial differential equations possess a fractional analogue,
like the wave equation or the diffusion equation. In general, these fractional
analogue are obtained by changing the classical time derivative by a frac-
tional one, which can be Riemann-Liouville, Caputo or another one. Of
course, these generalizations are supported by physical arguments but these
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equations always seem to be pure formal extensions. In this paper, we have
choosen to follow a different strategy.

For example, the fractional wave equation comes from the wave equa-
tion which possesses a (continuous) Lagrangian structure. We impose to
the fractional analogue to possess a fractional analogue of this Lagrangian
structure. This can be done using the framework of the fractional embed-
ding of Lagrangian systems. In that case, the fractional PDE is also solution
of a variational principle which is a fractional deformation of the classical one.

Using this strategy we can also discuss the inverse problem of fractional
calculus of variations for classical partial differential equations, like the dif-
fusion equation or Stokes equations, in order to obtain a Lagrangian repre-
sentation of such PDEs.

The interest of such results is at least twofold:

- First of all, we now have an intrinsic object, the Lagrangian, which
controls the dynamical behaviour of the PDE.

- Secondly, this intrinsic structure can be used to derive more adapted
numerical schemes for these equations. This will be discussed in a forthcom-
ing paper.

Section 2 gives a general introduction to the strategy of embedding theo-
ries. In section 3 we describe the fractional operators which are used in this
paper and some of their properties. In section 4 we give a self-contain intro-
duction to the fractional embedding theory of Lagrangian system developped
in [7]. In section 5, we derive explicit Lagrangian densities for the fractional
wave equation, the fractional diffusion equation and the Stokes equation. We
discuss open problems in section 6.

2. Embedding

This section is an introduction to the idea of embedding for differential
operators as developped for example in ([6],[7],[4]).
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2.1. Formal presentation

We refer to [7] where the notion of embedding is defined in general as well
as the notion of deformation.

An embedding is the data of two ingredients:

- A set A

- An operator D acting on A

Using A and D we can associated to a differential operator P [d/dt] =∑
i

ai
di

dti
an embedded analogue

Emb(P [d/dt]) =
∑

i

aiD
i,

acting on A.

2.2. An example: Schwartz’s embedding

In this case the set A is D′(Ω) the set of distributions on Ω. We have a
natural map from C0 into D′(Ω) defined on D(Ω) by

ι(f) : φ→
∫

Ω

fφ

The classical derivative d/dt has an analogue on D′(Ω) which we denote by
D : D′(Ω) → D′(Ω) which for T ∈ D′(Ω) is defined by

D(T )(φ) = −T (φ′)

We remark that we have
ι(f ′) = D(ι(f))

Then we associate to each differential operator
∑

ai
di

dti
an operator acting

on D′(Ω) ∑
aiD

i
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2.3. Problems induced by embedding of equations

2.3.1. Embedding and change of variables

The form of a given differential operator representing an equation is not
an intrinsic object. It depends mainly on the coordinates system which is
used to described the dynamics. In the classical case, a change of variables,
i.e. a map

y = h(x)

with h a bijective map of class C1, deos not affect the set of solutions as we
have a conjugacy between the solution φ(x) in the variable x and ψ(y) in the
variable y by

ψ ◦ h = h−1 ◦ φ

However, this simple action has not always a good behaviour with respect to
embedding. Indeed, if we denote by O the differential operator asoociated
to the equation in the set of variable x and by Õ the associated differential
operator in the set of variable y, we have not in general a simple link between
the embedded differential operators or solutions of the embedded equations.
This is mainly due to the fact that an embedding does not respect in gen-
eral the classical rule of derivation and as a consequence under a change of
variables we do not obtain the same thing.

2.3.2. Embedding and generalized solutions

An embedding is usually used to extend a given equation in order to
obtain a more general set of solutions as for example when one uses the
Schwartz’s embedding for partial differential equations. However, doing this,
we have in general a problem: the set of allowed solutions is too big. As an
example, when one uses Schwartz’s distributions to compute the solutions of

the partial differential equation
∂2u

∂x2
− ∂2u

∂y2
= 0 we obtain (see [17],p.4-5), for

ditributions which are functions, u(x, y) = f(x− y) + g(x− y) where f and
g need not to posess second order derivatives.

As a consequence, one must introduce a selection criterion in order to
obtain relevant or ”physical” solutions, as for example the classical entropic
conditions of Peter Lax. The same phenomenon exists in all embedding
theory.
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2.4. Embedding and intrinsic structures

We have then an infinity of possibilities for the embed equations depend-
ing on the choice of the underlying coordinates system used to describe the
dynamics. A way to overcome the previous problems is to focus on intrinsic
structures for equations.

2.4.1. Intrinsic structures: the case of Lagrangian systems

Most of partial or ordinary differential equations which are studied have
a physical origine. Some of them are not only phenomenological equations
but are derived via first principles of physics. This is the case for ordinary
differential equations which comes in classical mechanics. These equations
can be obtain via a variational principle, the least action principle, which
says that solutions of these equations correspond to extremals of a functional
called a Lagrangian functional. The least action principle is independant of
the coordinates system. A Lagrangian being given the form of the equation
is deduced from the functional. An idea in order to prescribe the form of the
embed equation is then to look for the behaviour of the variational principle
under the embedding.

2.4.2. The coherence problem

A lagrangian functional is a functional of the form

L(x) =

∫ b

a

L(x(t), ẋ(t), t) dt,

where L is a function, and x : t ∈ [a, b] → Rn, n ≥ 1 is C1. Under embedding
we can usually give a meaning to these functional. We denote by Lemb(X),
X ∈ A the new functional. Assuming that one can developp a calculus of
variations for these new kind of functionals, we obtain embed analogue of
the Euler-Lagrange equation that we denote EAEL in the following. This
programm has been done in the non-differentiable [4], stochastic [6] and frac-
tional case [7].

We have now the following diagramm:

L(x)
Emb−→ Lemb(X)

↓
Embedded analogue of Euler-Lagrange equation
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This diagramm must be completed by the following one

L(x)

↓
Euler-Lagrange equation

Emb−→ Embedded Euler-Lagrange equation

As a consequence, we have two possible generalizations of the classical
Euler-Lagrange equation. One by embedding and the second one by the em-
bedded functional. The second one keeps the fundamental structure of the
equation and the first one is natural. One condition that we can imposed is
the following property for the embedding scheme:

Coherence: An embedding is coherent if EAEL = Emb(EL).

An embedding is not always coherent (see [6],[7]) and a non trivial prob-
lem is to find conditions under which an embedding can be made coherent.

3. Reminder about fractional calculus

3.1. Left and right Riemann-Liouville derivatives

We define the left and right Riemann-Liouville derivatives following [12,
15, 14, 11]. Let a, b ∈ R, a < b and α ∈ R.

Definition 1 (Left Riemann-Liouville Fractional integral). Let x be a
measurable function defined on (a, b), and α > 0. Then the left Riemann-
Liouville fractional integral of order α is defined to be, when it exists,

aD−α
t Xt :=

1

Γ(α)

∫ t

a

(t− s)α−1x(s)ds. (1)

Definition 2 (Right Riemann-Liouville Fractional integral). Let x be
a measurable function defined on (a, b), and α > 0. Then the right Riemann-
Liouville fractional integral of order α is defined to be, when it exists,

tD
−α
b Xt :=

1

Γ(α)

∫ b

t

(s− t)α−1x(s)ds. (2)
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We use the abbreviation RL for Riemann-Liouville. Left and right (RL)
integrals satisfy some important properties like the semi-group property. We
refer to [15] for more details.

Definition 3 (Left and right RL fractional derivative). Let α > 0, the
left and right Riemann-Liouville derivative of order α, denoted by aDα

t and

tD
α
b respectively, are defined by

aDα
t Xt =

1

Γ(n− α)

(
d

dt

)n ∫ t

a

(t− s)n−α−1x(s)ds, (3)

and

tD
α
bXt =

1

Γ(n− α)

(
− d

dt

)n ∫ b

t

(t− s)n−α−1x(s)ds, (4)

where n ∈ N is such that n− 1 ≤ α < n.

If α = m, m ∈ N∗, we denote by Cm(]a, b[) the set of mappings having m
continuous derivatives on ]a, b[. For x ∈ Cm(]a, b[) we have

aDm
t x =

dmx

dtm
, tD

m
b = −d

mx

dtm
. (5)

This last relation which ensures that the left and right Riemann-Liouville
(RL) derivatives coincide with the classical derivative for positive integer
will be of fundamental importance in what follows.

If x ∈ C0(]a, b[) with left and right-derivatives at point t denoted by
d+x

dt

and
d−x

dt
respectively then

aDm
t x =

d+x

dt
, tD

m
b = −d

−x

dt
. (6)

In what follows, we denote by α
aE, Eα

b and aEb(α) the functional spaces
defined by

α
aE = {x ∈ C([a, b]), aDα

t x exists},
Eα

b = {x ∈ C([a, b]), tD
α
b x exists}, (7)

and

aEb(α) = α
aE ∩ Eα

b . (8)
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Remark 1. Of course the set aEb(α) is non-empty. Following [[15] Lemma
2.2 p.35] we have AC([a, b]) ⊂ aEb(α), where AC([a, b]) is the set of abso-
lutely continuous functions on the interval [a, b] [see [15] Definition 1.2].

The operators of ordinary differentiation of integer order satisfy a com-
mutativity property and the law of exponents (the semi-group property) i.e.

dn

dtn
◦ dm

dtm
=

dm

dtm
◦ dn

dtn
=

dn+m

dtn+m
. (9)

These two properties in general fail to be satisfied by the left and right frac-
tional RL derivatives. We refer to ([11] §.IV.6) and [[10] p.233] for more
details and examples. These bad properties are responsible for several diffi-
culties in the study of fractional differential equations. We refer to [14] for
more details.

3.2. Left and right fractional derivatives

In some cases, we need that our fractional operators satisfy additional
properties like the semi-group property. Following [8] we introduce the left
and right fractional derivatives as well as convenient functional spaces on
which we have the semi-group property.

Definition 4 (Left fractional derivative). Let x be a function defined on
R, α > 0, n be the smallest integer greater than α (n − 1 ≤ α < n), and
σ = n− α. Then the left fractional derivative of order α is defined to be

Dαx(t) := ∞D
α
t x(t) =

dn

dtn
∞D

−α
t x(t)

=
1

Γ(σ)

dn

dtn

∫ t

−∞
(t− s)σ−1x(s)ds.

(10)

Definition 5 (Right fractional derivative). Let x be a function defined
on R, α > 0, n be the smallest integer greater than α (n− 1 ≤ α < n), and
σ = n− α. Then the right fractional derivative of order α is defined to be

Dα
∗x(t) := tD

α
∞x(t) = (−1)n d

n

dtn
tD

−α
∞ x(t)

=
(−1)n

Γ(σ)

dn

dtn

∫ ∞

t

(s− t)σ−1x(s)ds.
(11)
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If Supp(x) ⊂ (a, b) we have Dαx = aDα
t x and Dα

∗x = tD
α
b x.

In [8] several useful functional spaces are introduced. Let I ⊂ R be
an open interval (which may be unbounded). We denote by C∞(I) the set
of infinitely differentiable mappings and by C∞

0 (I) the set of all functions
x ∈ C∞(I) that vanish outside a compact subset K of I.

Definition 6 (Left fractional derivative space). Let α > 0. Define the
semi-norm

| x |Jα
L (R):=‖ Dαx ‖L2(R), (12)

and norm

‖ x ‖Jα
L (R):=

(
‖ x ‖2

L2(R) + | x |2Jα
L (R)

)1/2

. (13)

and let Jα
L(R) denote the closure of C∞

0 (R) with respect to ‖ · ‖Jα
L (R).

Similarly, we can defined the right fractional derivative space.

Definition 7 (Right fractional derivative space). Let α > 0. Define
the semi-norm

| x |Jα
R(R):=‖ Dα

∗x ‖L2(R), (14)

and norm

‖ x ‖Jα
R(R):=

(
‖ x ‖2

L2(R) + | x |2Jα
R(R)

)1/2

. (15)

and let Jα
R(R) denote the closure of C∞

0 (R) with respect to ‖ · ‖Jα
R(R).

We now assume that I is a bounded open subinterval of R. We restrict
the fractional derivative spaces to I.

Definition 8. Define the spaces Jα
L,0(I), Jα

R,0(I) as the closure of C∞
0 (I)

under their respective norms.

These spaces have very interesting properties with respect to D and D∗.
In particular, we have the following semi-group property:

Lemma 1. For x ∈ Jβ
L,0(I), 0 < α < β we have

Dβx = DαDβ−αx (16)

and similarly for x ∈ Jβ
R,0(I),

Dβ
∗x = Dα

∗Dβ−α
∗ x. (17)
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We refer to [[8] Lemma 2.9] for a proof. In particular, choosing β = 2α,
α > 0, x ∈ J2α

L,0(I), we have D2αx = DαDαx and for x ∈ J2α
R,0(I) we obtain

D2α
∗ x = Dα

∗Dα
∗x.

The fractional derivative spaces Jα
L,0(I) and Jα

R,0(I) have been character-
ized when α > 0. We denote by Hα

0 (I) the fractional Sobolev space.

Theorem 1. Let α > 0. Then the Jα
L,0(I), Jα

R,0(I) and Hα
0 (I) spaces are

equal.

We refer to [[8] Theorem 2.13] for a proof. In fact, when α 6= n − 1/2,
n ∈ N we have a stronger result as the Jα

L,0(I), Jα
R,0(I) and Hα

0 (I) spaces
have equivalent semi-norms and norms.

We now introduce the fractional operator that we need in the following.

Definition 9. We denote by dα
µ the operator defined by

dα
µ =

Dα + Dα
∗

2
+ iµ

Dα − Dα
∗

2
, (18)

for µ = 1, 0,±i.

4. Reminder about the fractional embedding of continuous La-
grangian systems

We follow [7]. We refer to [18] and [2] for related works on the fractional
calculus of variations for fields.

Let d ∈ N. We consider a Lagrangian function  L defined on R×Rd×R×
C× Rd and denoted by

 L(t, x1, . . . , xd, y, v, w1, . . . , wd). (19)

In what follows, we use the terminology of Lagrangian density for a function
 L of the form (19). We denote x for (x1, . . . , xd). A Lagrangian density is
admissible if L(t, x, y, w) is holomorphic with respect to v, differentiable with
respect to x and w, and real when v ∈ R.
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Let < be a fixed region of Rd and a < b, a, b ∈ R. We consider the
functional

La,b,<(u) =

∫ b

a

∫
<

 L(t, x, u(t, x), ∂tu(t, x), ∂xu(t, x)) dx dt, (20)

acting on a function u : R × Rd −→ R which is usually called a field, which
is of class C1 in all its variables and where

∂xu(t, x) = (∂x1u(t, x), . . . , ∂xd
u(t, x)). (21)

A variation for a field u(t, x) is defined as a function of the form

uε(t, x) = u(t, x) + εh(t, x), (22)

where 0 < ε << 1 is a small parameter and with h satisfying the boundaries
conditions

h(a, x) = h(b, x) = 0 and h(t, ∂<) = 0, (23)

where ∂< denotes the boundary of <.

Using the fractional embedding procedure, we look for the following class
of fractional densities:

Definition 10. Let  L be an admissible Lagrangian density. The fractional
functional associated to  L is defined by

Lα
a,b(u) =

∫ b

a

∫
<

 L(t, x, u(t, x), dα
µu(t, x), ∂xu(t, x)) dx dt, (24)

for fields u(t, x) ∈ α
aFb(<), the set of fields smooth with respect to x and in

aEb(α) with respect to t.

We consider two spaces of variations for fields. For a field h : (t, x) 7→
h(t, x) we denote by ht and hx the partial maps ht : x 7→ h(t, x) where t is
fixed and hx : t 7→ h(t, x) where x is fixed.

Definition 11 (Spaces of variations for fields). We denote by Varα(a, b,<)
the set of fields satisfying

Varα(a, b,<) =

{
h(t, x), ht ∈ C1, hx ∈ aEb(α),

h(a, x) = h(b, x) = 0, h(t, ∂<) = 0

}
, (25)
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and by Varα
0 (a, b,<) the set of fields defined by

Varα
0 (a, b,<) =


h(t, x), ht ∈ C1, hx ∈ aEb(α),

h(a, x) = h(b, x) = 0,
h(t, ∂<) = 0, aDα

t h = tD
α
b h

 . (26)

We denote by P either Varα(a, b<) or Varα
0 (a, b,<). We have the follow-

ing notion of differentiability for fractional functionals:

Definition 12. Let  L be an admissible Lagrangian density and Lα
a,b the as-

sociated fractional functional. The functional Lα
a,b is called P-differentiable

at u, where u is a field, if

Lα
a,b(u+ εh)− Lα

a,b(u) = εdLα
a,b(u, h) + o(ε), (27)

for all h ∈ P, where dLα
a,b(u, h) is a linear functional of h.

As a consequence, we define the following notion of extremal:

Definition 13. Let L be an adimissible density and Lα the associated frac-
tional functional. A P-extremal for Lα is a field u(x, t) such that dLα(u, h) =
0 for all h ∈ P.

The main result of [7] is:

Theorem 2 (Fractional least-action principle for fields). Let  L be an
admissible Lagrangian density and Lα

a,b the associated fractional functional. A
necessary and sufficient condition for a field u to be a Varα(a, b,<)-extremal
is that it satisfies the fractional Euler-Lagrange equation for fields (FELF )α

−µ

where

∂  L

∂y
(zα(t, x))− dα

µ

[
∂  L

∂v
(zα(t, x)

]
−

d∑
i=1

∂

∂xi

[
∂  L

∂wi

(zα(t, x))

]
= 0 (FELF )α

µ

where zα(t, x) = (t, x, u(t, x), dα
µ(t, x), ∂xu(t, x)).

The main problem with this theorem is that it does not provide a co-
herent embedding scheme of Lagrangian densities over fractional functional
spaces. Indeed using the dα

µ embedding of differential operators on the clas-
sical Euler-Lagrange equation we obtain (FELF )α

µ which is not the equation
that we obtain using the fractional calculus of variation. Indeed, we obtain
(FELD)α

−µ using theorem 2.

In order to bypass this problem, we use the set of real variations Varα
0 (a, b,<).
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Theorem 3 (Weak Fractional least-action principle for fields). Let  L
be an admissible Lagrangian density and Lα

a,b the associated fractional func-
tional. A sufficient condition for a field u to be a Varα

0 (a, b,<)-extremal is
that it satisfies the fractional Euler-Lagrange equation for fields (FELF )α

µ.

As a consequence, we have a coherent embedding but under a strong
constraint on the set of variations.

5. Inverse problem of fractional calculus of variations for partial
differential equations

5.1. The fractional wave equation

In this section, we derive the fractional wave equation defined in [16] as
the extremals of a fractional continuous Lagrangian systems.

The equation describing waves propagating on a stretched string of con-
stant linear mass density ρ under constant tension T is

ρ
∂2u(t, x)

∂t2
= T

∂2u(t, x)

∂x2
, (28)

where u(t, x) denotes the amplitude of the wave at position x along the string
at time t. The wave equation corresponds to the extremals of the Lagrangian
density

 L(t, x, y, v, w) =
ρ

2
v2 − T

2
w2. (29)

In [16], the authors define the fractional analogue of the wave equation
by changing the classical derivative by a fractional one. Using our notations,
the definition of the fractional wave equation is:

Definition 14. The fractional wave equation of order α > 0 is the fractional
differential equation

−ρD2αu = T
∂2u

∂x2
. (30)

A natural demand with respect to this generalization which is just a for-
mal manipulation on equations, is to keep a more structural property of the
wave equation, namely the fact that it derives from a least-action principle.
Using our fractional embedding procedure, we are able to explicit such a
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fractional Lagrangian framework for the fractional wave equation.

In the following we work with the fractional embedding associated to dα
µ.

Theorem 4. The dα
µ-fractional embedding of the continuous Euler-Lagrange

equation associated to (29) is given by

−ρdα
µ ◦ dα

µu = T∂2
x2u. (31)

We can specialized by choosing µ = −i. In that case dα
−i = Dα and

satisfies a semi-group property (see lemma 1). As a consequence, we obtain:

Corollary 1. The Dα-fractional embedding of the continuous Euler-Lagrange
equation associated to (29) is given by

−ρD2αu = T∂2
x2u. (32)

Moreover, using the weak coherence theorem, we have:

Theorem 5. Solutions of the fractional wave equation (32) of order α > 0
correspond to weak-extremals of the Dα-fractional functional associated to  L.

Up to the author knowledge, this is the first time that the fractional wave
equation is derived via a fractional variational principle. In particular, the
previous derivation has the advantage to keep the continuous Lagrangian
structure underlying the classical wave equation.

5.2. The fractional diffusion equation

The fractional diffusion equation of order 0 < α < 1 is defined by

Dαu(t, x) = a2∂
2u(t, x)

∂x2
. (33)

It is defined by Wyss in [19]. For α = 1 we recover the classical diffusion
equation.

The aim of this section is to derive a fractional Lagrangian formulation of
the fractional wave equation of order 0 < α ≤ 1, then including the classical
diffusion equation. In the contrary of the fractional wave equation, the dif-
fusion equation is recovered thanks to a still fractional variational principle.
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Let us consider the Lagrangian function  L defined on R×R2 ×C×C by

 L(t, x, y, v, w) =
1

2
v2 − a2

2
w2, (34)

where ρ ∈ R, a ∈ R.

Theorem 6. The d
α/2
µ -fractional embedding of the continuous Euler-Lagrange

equation associated to (34) is given by

dα/2
µ ◦ dα/2

µ u = a2∂
2u

∂x2
. (35)

Choosing µ = −i, we obtain dα
−i = Dα. As Dα satisfies a semi-group

property, we obtain:

Theorem 7. The Dα/2-fractional embedding of the continuous Euler-Lagrange
equation associated to (34) is given by

Dαu = a2∂
2u

∂x2
. (36)

It must be noted that even for α = 1, the diffusion equation is recovered
using a fractional embedding procedure, namely the D1/2-fractional embed-
ding procedure.

The main result of this section is that this fractional embedding of the
diffusion equation has an additional structure, a Lagrangian one.

Theorem 8. Solutions of the fractional wave equation (33) of order 0 < α ≤
1 correspond to weak-extremals of the Dα/2-fractional functional associated to
(34).

This result seems new, even for the case α = 1.

5.3. The incompressible Stokes equations

The incompressible Stokes equation looks like

∂u

∂t
= ν∆xu−∇xp. (37)
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We consider the following one parameter deformation of the incompressible
Stokes equation:

Dα
t u = ν∆xu−∇xp (38)

where 0 < α ≤ 1, where the indice t in the fractional derivative Dα indicates
that we derive the field u(t, x) with respect to the time variable t.

For α = 1 we recover the classical incompressible Stokes equations. We
use the one parameter family in order to suggest that such an equation can
be obtain by the fractional embedding of a continuous Lagrangian systems.

Let us consider the continuous Lagrangian function L defined on R×R2×
C2 by

L(t, x, y, v, w) =
v2

2
− ν

2
w2 + pw (39)

where ν ∈ R and p is a function depending on x.

We have
∂L

∂y
= 0,

∂L

∂v
= v,

∂L

∂w
= −νw + p. (40)

Using the fractional embedding we obtain the following results:

Theorem 9. The Dα/2
t fractional embedding of the continuous Euler-Lagrange

equation associated to the Lagrangian density L(t, x, y, v, w) =
v2

2
− ν

2
w2+pw

is given by
Dα

t u = ν∆xu−∇xp. (41)

Proof: By the fractional least-action principle for fields, the extremals
of the fractional functional associated to L are given by

−Dα/2
t

(
∂L

∂v
(zα(t, x))

)
− ∂

∂x

(
∂L

∂w
(zα(t, x))

)
= 0, (42)

where zα(t, x) = (t, x, u(t, x), dα/2u, ∂xu). As a consequence, we obtain

−Dα/2
t ◦ Dα/2

t u+ ∂x(ν∂xu− p). (43)

As Dα/2
t ◦ Dα/2

t = Dα
t we obtain the result.2

The main consequence of this theorem is the following :
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Theorem 10. If a field u(t, x) is a solution of the incompressible Stokes

equation then it is a D1/2
t -weak extremal of the Lagrangian density L(t, x, y, v, w) =

v2

2
− ν

2
w2 + pw.

Proof: This a consequence of theorem 9 and theorem 3 with α = 1. 2

As a consequence, we have the following diagramm which commutes

La,b,<

LAP
��

Emb(D1/2) // L1/2
a,b,<

WFLAP
��

−∂
2u

∂t2
= ∂x(ν∂xu− p)

Emb(D1/2)// Stokes equations

(44)

where LAP and WFLAP corresponds to the least action principle and the
weak fractional least action principle respectively.

This diagramm is not correct if we replace the weak fractional least action
principle by the fractional least action principle given by theorem 2.

6. Conclusion

The previous results can be used as a conceptual guideline to generalize
classical equations of physics in the fractional framework. If the classical
equation possesses an additional structure, for example Lagrangian, then we
must extend this equation keeping this additional structure, generalized in
a natural way. The main remark is that equations by themselves do not
have a universal significance, their form depending mostly on the coordi-
nates systems being used to derive them. On the contrary the underlying
first principle like the least-action principle carries an information which is
of physical interest and not related to the coordinates system which is used.
At least, this point of view explains the importance of coherence theorems
in all the existing embedding theories of dynamical systems.

From the physical side we can also want to keep homogeneity of the em-
bedded equations whith respect to the fundamental units of Physics. This
has been done by Pierre Inizan [13].

17



Our derivation of a Lagrangian structure for the Stokes equations sug-
gests to look for a Lagrangian structure for the Navier-Stokes or the Euler
equations in a unified way, i.e. with a Lagrangian depending on the viso-
cisty as well as the underlying functional set which is related to the choice
of the corresponding embedding procedure. It seems that this can not be
done in the fractional calculus setting. However, we refer to [4] and [5] where
this programm is developped using the non-differentiable and the stochastic
embedding theories respectively.
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