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Abstract
We follow Stanislavsky’s approach of Hamiltonian formalism for fractional systems, as a
model problem for the study of chaotic Hamiltonian systems. We prove that his formalism can
be retrieved from the fractional embedding theory. We deduce that the fractional Hamiltonian
systems of Stanislavsky stem from a particular least action principle, said to be causal. In this
case, the fractional embedding becomes coherent.

PACS numbers: 05.40.Fb, 45.10.Hj, 45.20.Jj

1. Introduction

The field of fractional calculus has been widely developing
for a decade and its effectiveness has already been proved
in various areas such as continuum mechanics (see [1]),
chemistry (see [2]), transport theory (see [3]), fractional
diffusion (see [4]), etc.

In a book by Zaslavsky [5], a link with chaotic
Hamiltonian systems is drawn. Because of the appearance
of fractal structures in phase spaces of nonhyperbolic
Hamiltonian systems, fractional dynamics may arise in such
systems. Zaslavsky then explains [5, chapters 12–13] that
time takes on a fractal structure, meaning that it can be
considered as a succession of specific temporal intervals.
However, further investigations have to be carried out to
understand and clarify the link between this peculiar temporal
comportment and the fractional dynamics.

A contribution towards this is made in [6]. As a model
problem for the effects of a given distribution of recurrence
times on the underlying Hamiltonian dynamics, we use
Stanislavsky’s approach for his definition of a Hamiltonian
formalism for fractional systems. Indeed, this author looks
for the effects induced by the assumption that the time
variable is governed by a particular stochastic process on a
given Hamiltonian dynamics. This kind of process contains
notably the case of the algebraic decay of recurrence times
that occurs in the study of chaotic Hamiltonian systems
(see [5]). Stanislavsky proves, under strong assumptions, that
the induced dynamics is fractional and that the structure of
the new system looks like the classical Hamiltonian one. This

allows him to give a definition of a Hamiltonian formalism for
fractional systems.

However, an important property of Hamiltonian systems
is that they can be obtained by a variational principle,
called the Hamilton least action principle (see [7]). A
natural question with respect to Stanislavsky’s construction is
whether his definition of the fractional Hamiltonian system
can be derived from a variational principle.

In the present paper, by using the fractional embedding
theory developed in [8], we prove that Stanislavsky’s
Hamiltonian formalism for fractional systems coincides
with the fractional Hamiltonian formalism induced
by the fractional embedding. In particular, this means
that Stanislavsky’s fractional Hamiltonian systems can
be obtained by a variational principle. Moreover, this
fractional formalism is coherent, meaning that there exists
a commutative diagram for the obtention of the fractional
equations.

In section 2, we discuss Stanislavsky’s formalism.
Section 3 is devoted to the development of the fraction
embedding theory using the Caputo derivatives. We obtain
a causal and coherent embedding by restricting the
set of variations underlying the fractional calculus of
variations. We also prove that the fractional embedding
of the usual Hamiltonian formalism resulting from the
Lagrangian one is coherent. In section 4, we prove that
the fractional Hamiltonian formalism stemming from the
causal fractional embedding coincides with Stanislavsky’s
formalism. We finally discuss some open problems in
section 5.
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2. Stanislavsky’s Hamiltonian formalism
for fractional systems

2.1. Definition of the internal time

Let T1, T2, . . . be non-negative independent and identically
distributed variables, with distribution ρ. We set T (0) = 0
and for n > 1, T (n) =

∑n
i=1 Ti . The Ti represent random

temporal intervals. Let {Nt }t>0 = max{n > 0 | T (n)6 t} be
the associated counting process. We suppose that there exists
0 < α < 1 such that

ρ(t) ∼
a

t1+α
, t → ∞, a > 0, 0 < α < 1. (2.1)

Therefore the variables Ti belong to the strict domain of
attraction of an α-stable distribution. Theorem 3.2 of [9]
implies

Theorem 1. There exists a process {S(t)}t>0 and a regularly
varying function b with index α such that

{b(c)−1 Nct }t>0
F D
H⇒ {S(t)}t>0, c → ∞,

where
F D
H⇒ denotes convergence in distribution of all

finite-dimensional marginal distributions.

The process {S(t)}t>0 is a hitting-time process (see [9])
and is also called a first-passage time. From [10], the
distribution of {S(t)}t>0, denoted by pt , verifies

L[pt ](v) = E[exp(−vS(t))] = Eα(−vtα),

where L is the Laplace transform and Eα is the one-parameter
Mittag–Leffler function. It follows that∫

∞

0
e−wt pt (x) dt = wα−1 exp(−xwα). (2.2)

The process {S(t)}t>0 is increasing and may play the role
of a stochastic time, which is called internal time in [6].
The distribution pt (τ ) represents the probability to be at
the internal time τ on the real time t . Using this new
time, Stanislavsky studies Hamiltonian systems which evolve
according to S(t).

2.2. Fractional Hamiltonian equations

We consider a Hamiltonian system, with a Hamiltonian
H(x, p), and associated canonical equations

d

dt
x(t) = ∂2 H(x(t), p(t)),

d

dt
p(t) = −∂1 H(x(t), p(t)).

(2.3)

If t is replaced by S(t), how is the dynamics modified? To
answer this question, Stanislavsky introduces new variables
xα and pα defined by

xα(t) = E[x(S(t))] =
∫

∞

0 pt (τ )x(τ )dτ,

pα(t) = E[p(S(t))] =
∫

∞

0 pt (τ )p(τ )dτ.
(2.4)

Furthermore, he assumes that

∂1 H(xα(t), pα(t)) =
∫

∞

0 pt (τ )∂1 H(x(τ ), p(τ ))dτ,

∂2 H(xα(t), pα(t)) =
∫

∞

0 pt (τ )∂2 H(x(τ ), p(τ ))dτ,
(2.5)

which provides the following result.

Theorem 2. Let (x, p) be a solution of (2.3). Then
condition (2.5) is verified if and only if (xα, pα) defined
by (2.4) verifies

0Dα
t xα(t) = ∂2 H(xα(t), pα(t)),

0Dα
t pα(t) = −∂1 H(xα(t), pα(t)),

(2.6)

where aDα
t is the left Caputo derivative defined by

aDα
t f (t) =

1

0(1 − α)

∫ t

a
(t − τ)−α f ′(τ ) dτ.

Proof. As x verifies (2.3), we have∫
∞

0
pt (τ )∂2 H(x(τ ), p(τ )) dτ =

∫
∞

0
pt (τ )

d

dτ
x(τ )dτ.

The Laplace transform of this expression gives

L
[∫

∞

0
pt (τ )∂2 H(x, p) dτ

]
(s)

=

∫
∞

0
L[pt ](s)

d

dτ
x(τ )dτ,

= sα−1
∫

∞

0
exp(−τ sα)

d

dτ
x(τ )dτ from (2.2),

= s2α−1L[x](sα) − sα−1x(0).

Given that L[xα](s) = sα−1L[x](sα), we have

L
[∫

∞

0
pt (τ )∂2 H(x(τ ), p(τ )) dτ

]
(s) = L

[
0Dα

t xα

]
(s).

By taking the Laplace image of this relation, we obtain

0Dα
t xα(t) =

∫
∞

0
pt (τ )∂2 H(x(τ ), p(τ )) dτ.

In a similar way, we also have

0Dα
t pα(t) = −

∫
∞

0
pt (τ )∂1 H(x(τ ), p(τ )) dτ,

and the equivalence follows. �

For an explanation of fractional calculus and its
applications, we refer the reader to [11–13].

Hence, we will say that a fractional system of the form

0Dα
t x(t) = f1(x(t), p(t)),

0Dα
t p(t) = f2(x(t), p(t))

is Hamiltonian in the sense of Stanislavsky if there exists a
function H(x, p) such that

f1(x, p) = ∂2 H(x, p),

f2(x, p) = − ∂1 H(x, p).

2



Phys. Scr. T136 (2009) 014007 J Cresson and P Inizan

We can see that the fractional derivative 0Dα
t appears as

a natural consequence of the structure of the internal time
S(t). The fractional exponent α is exactly determined by
the behaviour (2.1) of long time intervals. We note that if
we had α > 1 in (2.1), the α-stable distribution would be
the Gaussian one, we would have pt (τ ) = δτ (t) and then
S(t) ≡ t . In this case, internal time and real time would be
the same. Consequently, for α > 1, the associated derivative
is the classical one.

3. Fractional embedding of Lagrangian
and Hamiltonian systems

An important property of classical Hamiltonian systems is
that they are solutions of a variational principle, called the
Hamilton least action principle (see [7]). A natural question
is whether the fractional Hamiltonian systems defined by
Stanislavsky can be derived from a variational principle.

Fractional Euler–Lagrange and Hamilton equations have
been first derived in [14], in order to include frictional
forces into a variational principle. In [15], a fractional
Euler–Lagrange equation is obtained using a fractional least
action principle. This formalism includes the left and right
fractional derivatives. The related Hamilton equations are
derived in [16]. However, their equations are different from
those obtained by Stanislavsky.

Using the fractional embedding theory developed in [8],
we prove that the Stanislavsky Hamiltonian formalism stems
from a fractional variational principle, called causal, and
moreover that this construction is coherent.

We sum up here the general ideas of the fractional
embedding theory for the Caputo derivative. Similarly to the
left one, the right Caputo derivative is defined by

tDα
b f (t) =

−1

0(1 − α)

∫ b

t
(τ − t)−α f ′(τ ) dτ.

The left fractional integral is defined by

aD−α
t f (t) =

1

0(α)

∫ t

a
(t − τ)α−1 f (τ ) dτ

and the right one by

tD−α
b f (t) =

1

0(α)

∫ b

t
(τ − t)α−1 f (τ ) dτ.

3.1. Fractional embedding of differential operators

Let f = ( f1, . . . , f p) and g = (g1, . . . , gp) be two p-uplets of
smooth functions Rk+2

−→ Rl . Let a, b ∈ R with a < b. We
denote by O(f, g) the differential operator defined by

O(f, g)(x)(t) =

p∑
i=0

(
fi ·

di

dt i
gi

) (
x(t), . . . ,

dk

dtk
x(t), t

)
,

(3.1)

where, for any functions y = (y1, . . . , yl), z = (z1, . . . , zl) :
R−→ Rl ,

(y · z)(t) = (y1(t) z1(t), . . . , yl(t) zl(t)).

The fractional embedding of O(f, g), denoted by Eα(O(f, g)),
is defined by

Eα(O(f, g))(x)(t) =

p∑
i=0

( fi · (aDα
t )i gi )(x(t), . . . ,

(aDα
t )k x(t), t). (3.2)

We define the ordinary differential equation associated
with O(f, g) by

O(f, g)(x) = 0. (3.3)

The fractional embedding Eα(O(f, g)) of (3.3) is
defined by

Eα(O(f, g))(x) = 0.

3.2. Lagrangian systems

Now we consider a Lagrangian system, with a smooth
Lagrangian L(x, v, u) and u ∈ [a, b]. The Lagrangian L can
naturally lead to a differential operator of the form (3.1):

O(1, L)(x)(t) = L

(
x(t),

d

dt
x(t), t

)
.

Now we identify L and O(1, L). The fractional
embedding (3.2) of L , Eα(L), is hence given by

Eα(L)(x)(t) = L(x(t), aDα
t x(t), t).

In Lagrangian mechanics, the action and its extrema play
a central role. For any mapping g, the action of g, denoted by
A(g), is defined by

A(g)(x) =

∫ b

a
g(x)(t) dt.

For example, with the identification L ≡O(1, L), the
action of L is given by

A(L)(x) =

∫ b

a
L

(
x(t),

d

dt
x(t), t

)
dt,

and concerning the fractional embedding of L , the associated
action is

A(Eα(L))(x) =

∫ b

a
L

(
x(t), aDα

t x(t), t
)

dt.

The extrema of the action of a Lagrangian L provide the
equation of motion associated.

Theorem 3. If the action A(L) is extremal in x, then x
satisfies the Euler–Lagrange equation, given by

∂1L

(
x(t),

d

dt
x(t), t

)
−

d

dt
∂2L

(
x(t),

d

dt
x(t), t

)
= 0.

(3.4)
This equation is denoted by E L(L).

This procedure should not be modified with fractional
derivatives. Indeed, the strict definition of the Lagrangian L
does not involve any temporal derivative. The dynamics is
afterwards fixed with the choice of the derivative D and the

3
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relation v(t) = Dx(t). The variational principle providing the
Euler–Lagrange equation uses an integration by parts, which
remains in the fractional case:∫ b

a

[
aDα

t f (t)
]

g(t)dt =

∫ b

a
f (t)

[
bDα

t g(t)
]

dt

+ g(b)aD−(1−α)
b f (b)

− f (a)aD−(1−α)
b g(a).

We introduce the space of variations

Vα =

{
h ∈ C1([a, b]) | aD−(1−α)

b h(a) = h(b) = 0
}

.

For h ∈ Vα , we have

A(Eα(L))(x + h) =A(Eα(L))(x)

+
∫ b

a
[∂1L + tDα

b ∂2L](x(t), aDα
t x(t), t)

× h(t) dt + o(h),

which implies that the differential of A(Eα(L)) in x is given,
for any h ∈ Vα , by

dA(Eα(L))(x, h) =

∫ b

a
[∂1L + tDα

b ∂2L](x, aDα
t x, t) h(t) dt,

= 〈[∂1L+tDα
b ∂2L](x(·), aDα

t x(·), ·), h〉,

where 〈 f, g〉 =
∫ b

a f (t)g(t) dt is a scalar product defined on
C1([a, b]).

If E ⊂ Vα , we will say that A(Eα(L)) is E-extremal in x
if for all h ∈ E , dA(Eα(L))(x, h) = 0.

So we obtain a first fractional Euler–Lagrange equation
with the following result.

Theorem 4. A(Eα(L)) is Vα-extremal in x if and only if x
verifies

∂1L(x(t), aDα
t x(t), t)+tDα

b ∂2L(x(t), aDα
t x(t), t) = 0.

(3.5)

Proof. A(Eα(L)) is Vα-extremal in x if and only if for all
h ∈ Vα ,

〈[∂1L+tDα
b ∂2L](x(·), aDα

t x(·), ·),h〉 = 0.

This is equivalent to [∂1L+tDα
b ∂2L](x(·), aDα

t x(·)) ∈ V ⊥
α .

We conclude by noting that V ⊥
α = Vα

⊥
= {0}, where Vα is the

adherence of Vα in C1([a, b]), equal to C1([a, b]) entirely. �

Equation (3.5) will be called the general fractional
Euler–Lagrange equation and will be denoted by
E Lg(Eα(L)). Contrary to (3.4), two operators are involved
here. We will now discuss the problematic presence of tDα

b .

3.3. Coherence and causality

Because of the simultaneous presence of the two derivatives,
the position of x at time t depends on its past positions,

through aDα
t , but also on its future ones, through tDα

b . The
principle of causality is here violated, which seems crippling
from a physical point of view. Moreover, we note that (3.4)
can be written in the form (3.3), with f = (1, 1) and g =

(∂1L , −∂2L). The fractional embedding Eα(E L(L)) of (3.4)
is therefore

∂1L(x(t), aDα
t x(t), t)−aDα

t ∂2L(x(t), aDα
t x(t), t) = 0,

which shows that E Lg(Eα(L)) 6≡ Eα(E L(L)): fractional
embedding and the least action principle are not commutative.
So we obtain two procedures providing different fractional
equations, which also seems unsatisfactory. We are facing
a Cornelian choice: shall we preserve causality or the least
action principle? A possible way of solving this problem is to
restrict the space of variations.

We note Ṽα = {h ∈ Vα | aDα
t h = −tDα

b h} and Kα =

aDα
t + tDα

b , defined on C1([a, b]). For any f, g ∈ Vα ,
〈Kα f, g〉 = 〈 f, Kαg〉. We show that Kα is essentially
self-adjoint and we obtain a new Euler–Lagrange equation:

Theorem 5. A(Eα(L)) is Ṽα-extremal in x if and only if there
exists a function g such that x verifies

∂1L(x(t), aDα
t x(t), t)−aDα

t ∂2L(x(t), aDα
t x(t), t) = Kα g.

Proof. A(Eα(L)) is Ṽα-extremal in x if and only
if [∂1L+tDα

b ∂2L](x(·), aDα
t x(·)) ∈ Ṽ ⊥

α . Given that
Ṽ ⊥

α = (Ker Kα)⊥ = Im Kα ,A(Eα(L)) is extremal if and only
if there exists g̃ such that

∂1L(x(t), aDα
t x(t), t)+tDα

b ∂2L(x(t), aDα
t x(t), t) = Kα g̃.

We conclude by setting g(t) = g̃(t) + ∂2L(x(t), aDα
t x(t), t).

�

Restricting the space of variations breaks the unicity of
the solution. However, among those solutions, there is a single
one that remains causal (without the operator tDα

b ), for g = 0:

∂1L(x(t), aDα
t x(t), t)−aDα

t ∂2L(x(t), aDα
t x(t), t) = 0.

(3.6)
Equation (3.6) will be called the causal fractional
Euler–Lagrange equation, and will be denoted by
E Lc(Eα(L)).

Now causality is respected and we have E Lc(Eα(L)) ≡

Eα(E L(L)). In this case, the fractional embedding is called
coherent, in the sense that the following diagram commutes:

L

(causal) LAP

Eα Eα(L )

causal FLAP

∂1L − d
dt ∂2L)( = 0 Eα (∂1 L − aDαt ∂2 L) = 0 .

The abbrevation (F)LAP stands for the ‘(fractional) least
action principle’. As aD1

t = −tD1
b = d/dt , we can say that the

least action is also causal in the classical case.
However, in the fractional case, the physical meaning of

Ṽα is not clear, but it might be related to a reversible dynamics
of the variations. Furthermore, this underlines the significant
role of variations in the global dynamics.

4
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3.4. Fractional Hamiltonian systems based on fractional
Lagrangian ones

There exists a natural derivation of a Hamiltonian system from
a Lagrangian system based on the Legendre transformation.
We consider an autonomous Lagrangian system, with
Lagrangian L(x, v), and we suppose that

∀x, v 7→ ∂2L(x, v) is bijective.

The momentum associated with the variable x is p =

∂2L(x, v). So there exists a mapping f named Legendre
transformation such that v = f (x, p). The Hamiltonian H
associated with L is defined by

H(x, p) = p f (x, p) − L(x, f (x, p)).

It implies ∂1 H(x, p) = −∂1L(x, f (x, p)) and ∂2 H(x, p) =

f (x, p).
We introduce the function

FLH(x, p, v, w) =

 p − ∂2L(x, v)

∂1 H(x, p) + ∂1L(x, f (x, p))

∂2 H(x, p) − f (x, p)

 .

The link between the Lagrangian and Hamiltonian
formalisms is done through the equation

FLH(x, p, v, w) = 0. (3.7)

The momentum p induces a function p(t) =

∂2L(x(t), v(t)), which can be considered as the dynamical
momentum.

For the classical dynamics, (3.7) becomes

FLH

(
x(t), p(t),

d

dt
x(t),

d

dt
p(t)

)
= 0,

i.e.

p(t) = ∂2L

(
x(t),

d

dt
x(t)

)
,

∂1 H(x(t), p(t)) = − ∂1L

(
x(t),

d

dt
x(t)

)
,

∂2 H(x(t), p(t)) =
d

dt
x(t).

Moreover, if x(t) is the solution of the Euler–Lagrange
equation (3.4), we obtain the canonical equations

d

dt
x(t) = ∂2 H(x(t), p(t)),

d

dt
p(t) = − ∂1 H(x(t), p(t)).

For the fractional case, the fractional embedding (3.2) of (3.7)
is given by

p(t) = ∂2L
(
x(t), aDα

t x(t)
)
,

∂1 H(x(t), p(t)) = − ∂1L
(
x(t), aDα

t x(t)
)
,

∂2 H(x(t), p(t)) = aDα
t x(t).

Then the following result is obtained:

Theorem 6. If x(t) is the solution of the causal fractional
Euler–Lagrange equation (3.6), then we have

aDα
t x(t) = ∂2 H(x(t), p(t)),

aDα
t p(t) = − ∂1 H(x(t), p(t)).

These are the equations describing the dynamics of a
fractional Hamiltonian system derived from a Lagrangian
formalism. But Hamiltonian systems can also be considered
directly, as will be seen.

3.5. Embedded Hamiltonian systems

Now we consider a Hamiltonian system as defined
in section 2, with a Hamiltonian H(x, p) and with
equations (2.3) associated. The fractional embedding (3.2)
of (2.3) is

aDα
t x(t) = ∂2 H(x(t), p(t)),

aDα
t p(t) = −∂1 H(x(t), p(t)).

(3.8)

Furthermore, by introducing the function

LH(x, p, v, w) = pv − H(x, p),

we can verify that the classical Hamiltonian equations are
given by the extrema of the action of LH defined by

A(LH)(x, p) =

∫ b

a
LH

(
x(t), p(t),

d

dt
x(t),

d

dt
p(t)

)
dt.

In the fractional case, the action becomes

A(Eα(LH))(x, p)=

∫ b

a
LH

(
x(t), p(t), aDα

t x(t), aDα
t p(t)

)
dt.

Using the causal fractional Euler–Lagrange equation for
LH, we obtain the following result.

Theorem 7 (Hamiltonian coherence). Let H be a Hamil-
tonian function. The solutions (x(t), p(t)) of the fractional
system (3.8) coincide with causal extremal points of the
action A(Eα(L H )). More precisely, the following diagram
commutes:

L H

(causal) LAP

Eα Eα(L H )

causal FLAP
d
dt (x (t), p(t)) = (∂2H, −∂1H ) Eα aDαt (x (t), p  (t)) = (∂2H,−∂1H )

Proof. The causal fractional Euler–Lagrange equation for
LH is

−∂1 H(x(t), p(t)) − aDα
t p(t) = 0,

aDα
t x(t) − ∂2 H(x(t), p(t)) = 0,

which is exactly (3.8). �

So we have coherence between the directly embedded
equations and the equations obtained by a variational
principle. But we also have coherence between this section

5
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and the previous one, i.e. between the fractional Hamiltonian
systems resulting from the Lagrangian ones and the embedded
Hamiltonian systems.

In other words, the equivalent approaches for
Hamiltonian systems in the classical case remain equivalent
in the fractional case if we use causal variational principles.

Now we will discuss the link between this formalism and
Stanislavsky’s formalism.

4. Compatibility between the two formalisms

Condition (2.5) means that the partial derivatives of H
commute with E[·(S(t))] . This condition just seems to be
of technical order and appears to be unrelated to the real
dynamics. However, by using the fractional embedding, we
can identify the underlying dynamical link in the case of
natural Lagrangian systems.

We consider a natural Lagrangian system, i.e. with a
Lagrangian L of the form L(x, v) =

1
2 mv2

− U (x), and the
Hamiltonian H(x, p) derived as in section 3.4. We choose
a = 0 for the initial instant. We have H(x, p) =

1
2m p2 + U (x),

with p = ∂2L(x, v) = mv. We suppose that (x, p) is the
solution of the classical Hamiltonian equations (2.3). We
define the associated variables xα and pα by (2.4).

Theorem 8. If xα is the solution of the causal fractional
Euler–Lagrange equation (3.6) associated with L, then
condition (2.5) is verified. Consequently, (xα, pα) is the
solution of (2.6).

Proof. We set p̃α(t) = ∂2L(xα(t), 0Dα
t xα(t)), i.e. p̃α(t) =

m 0Dα
t xα(t). Then, from theorem 6, (xα, p̃α) is the solution of

0Dα
t xα(t) = ∂2 H(xα(t), p̃α(t)),

(4.1)

0Dα
t p̃α(t) = − ∂1 H(xα(t), p̃α(t)).

Moreover, we have

p̃α(t) = m 0Dα
t

∫
∞

0
pt (τ )x(τ ) dτ = m

∫
∞

0
pt (τ )

d

dτ
x(τ ) dτ

=

∫
∞

0
pt (τ )mv(τ) dτ =

∫
∞

0
pt (τ )p(τ ) dτ = pα(t).

So we can replace p̃α by pα in (4.1), to obtain (2.6).
We conclude by using theorem 2. �

5. Conclusion

If we consider the temporal evolution variable of a Lagrangian
system as a succession of random intervals and if their
density has a power-law tail, then the dynamics of this system
is fractional. The associated equations can be determined
through a fractional embedding, based on a least action
principle. In order to obtain causal and coherent equations, it
is necessary to restrict the space of variations. This condition
might be seen as a way to cancel the finalist aspect of the
least action principle. Even if it is still unclear, this model of

time could notably be appropriated for the description of some
chaotic Hamiltonian dynamics. Some numerical experiments
show that distributions of Poincaré recurrence times may
possess a power-law tail (see [5, chapter 11], [17, 18]).
Consequently, the time may be decomposed into a succession
of recurrence times. For long time scale dynamics, the number
of intervals is great and the new characteristic time clock may
become S(t). This new time takes into account the peculiar
structure of the recurrence times: if the power-law exponent
α verifies 0 < α < 1, the long time scale dynamics becomes
fractional with the same exponent α. This idea of stacked
dynamics based on two time scales could be linked with [19],
where close results are obtained. However, because of the Kac
lemma ([20]), which states that the mean recurrence time is
finite, condition (2.1) may be valid only locally, near some
island boundaries, called sticky zones. Further investigations
have to be carried out to clarify this point.
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