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Abstract. � In this paper, we introduce the notion of discrete embedding which is an

algebraic procedure associating a numerical scheme to a given ordinary di�erential equation.
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corresponding variational integrator on fractional Lagrangian systems.
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Introduction

Fractional calculus is a source of many investigations for the purposes of Physics and

Engineering (see [4], [15], [18], [22], [24]). For example, fractional terms appear numer-

ically in the modeling of the �ow of a �uid in a heterogeneous environment, [25]. In

Mathematics, we �nd fractional calculus in the probability theory, [20]. Moreover, due to

their nonlocal characteristic and consequently due to their capacity of memory, fractional

di�erential operators are also interesting for �nancial mathematics, [10], and for modeling

of some materials like gum and rubber.

In recent years, many studies have been devoted to fractional Lagrangian systems, [11].

They arise for example in fractional optimal control theory ([1], [2], [14], [16]) and they

are di�cult to solve explicitly (see [22] for a general study). Then, it is interesting to

develop e�cient numerical schemes to such systems.

There exists a suitable method for classical Lagrangian systems called variational in-

tegrators which is developed in [17], [21]. Indeed, classical Lagrangian systems possess

a variational structure, i.e. their solutions correspond to critical points of a functional

and this characterization does not depend on the coordinates system, [5]. This structure

induces strong constraints on the qualitative behavior of the solutions, as for example the

conservation of energy for autonomous classical Lagrangian systems.

The basic idea of a variational integrator is to preserve this variational structure at the

discrete level. We can obtain this numerical scheme by forming a discrete analogous of the

variational principle on a discrete version of the Lagrangian functional.

Following the usual strategy of [17] and [21], this paper is devoted to the extension of

variational integrators to the fractional case in the framework of discrete embeddings.

More precisely, we �rst de�ne the notion of discrete embedding which gives a direct

discrete analogous of a given di�erential equation (in particular of a given Lagrangian

system). This procedure is algebraic and mainly based on the form of di�erential operators

which is coordinates dependent. Consequently, this process does not necessary conserve at

the discrete level the intrinsic Lagrangian structure of a Lagrangian system.

On the other hand, a discrete embedding gives a discrete version of a given Lagrangian

functional and we can develop a discrete calculus of variations on this one which leads to

a variational integrator of the associated Lagrangian system.

Then, by de�ning a discrete embedding, we obtain two discretizations of a Lagrangian

system: the direct one and the variational integrator. Of course, these two discretizations

are not necessary the same: in this case, we say that the discrete embedding is not coherent.

In this paper, we �rst prove that the basic �nite di�erences discrete embedding is not

coherent in the classical case. However, this default of coherence can be corrected by
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rewriting, with left and right derivatives, the classical di�erential equation of Lagrangian

systems. Indeed, this asymmetric rewriting corresponds at the continuous level to the dis-

crete version of Lagrangian systems obtained by variational integrator. As a consequence,

the discrete embedding is coherent in the asymmetric case.

In the fractional case, the derivatives are naturally asymmetric and satisfy a fractional

integration by parts. In this paper, we prove that the fractional Grünwald-Letnikov dis-

crete embedding is coherent.

The discretization of fractional Euler-Lagrange equations has been discussed by several

authors. We refer in particular to [3] for �nite element methods to fractional Lagrangian

functionals, to [7] and [8] for a discrete fractional calculus of variations and to [6] for a

numerical scheme on fractional optimal control problems. Some preliminary results on

fractional discrete operators have already been discussed in these papers.

However, the discrete embedding point of view and the associated notion of variational

integrator are not introduced in these papers as well as the corresponding coherence prob-

lem.

The paper is organized as follows. In section 1, we de�ne the notion of discrete embed-

dings and direct discrete embeddings of a di�erential equation. Section 2 recalls de�nitions

and results concerning Lagrangian systems. Then, we apply the previous theory of discrete

embeddings to Lagrangian systems. Section 3 recalls the strategy of variational integrators

in the framework of discrete embeddings. Noticing a default of coherence of the previous

discrete embedding, we de�ne in section 4 asymmetric derivatives and then asymmetric

Lagrangian systems. With these asymmetric notations, we correct the default of coher-

ence. Section 5 is an introduction to fractional calculus. Finally, section 6 is devoted to

fractional discrete embeddings and the associated fractional variational integrators.

1. Notion of discrete embeddings

In this paper, we consider classical and fractional di�erential systems in Rd where d ∈ N∗

is the dimension. The trajectories of these systems are curves q in C0([a, b],Rd) where a < b

are two reals. For smooth enough functions q, we denote q̇ =
dq

dt
and q̈ =

d2q

dt2
.

1.1. Discrete embeddings. � A discrete embedding is a particular way to give a dis-

crete analogous of an ordinary di�erential equation:

De�nition 1. � De�ning a discrete embedding means giving a discrete version of the

following elements: the curves q ∈ C0([a, b],Rd), the derivative operator
d

dt
and the func-

tionals a : C0([a, b],Rd) −→ R. More precisely, it means giving:

� an application q 7−→ qh where qh ∈ (Rd)m1,
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� a discrete operator ∆ : (Rd)m1 −→ (Rd)m2 which discretizes the di�erential operator
d

dt
,

� an application a 7−→ ah where ah : (Rd)m1 −→ R,

where m1,m2 ∈ N∗.

Obviously, the discretization of curves above-de�ned induces the discrete evaluation of a

function f ∈ C0(Rd,Rm), m ∈ N∗ on the curves q. Indeed, by abusing the notation, if we

denote by f the following application

f : C0([a, b],Rd) −→ C0([a, b],Rm)

q 7−→ f o q

,

then the discretization of f is fh given by:

fh : (Rd)m1 −→ (Rm)m1

qh 7−→ fh(qh) :=
(
f(qhk )

)
k=1,...,m1

.

However, the discretization of a functional is not obvious. Indeed, it could use the dis-

cretization of
d

dt
and the discretization of other mathematical tools depending on the form

of the functional itself. We are giving an example in subsection 3.1 with the discretization

of a Lagrangian functional is written with an integral.

In order to illustrate de�nition 1, we de�ne forward and backward �nite di�erences em-

bedding. For all the rest of the paper, we �x σ = ± and N ∈ N∗. We denote by h =
b− a
N

the step size of the discretization and τ = (tk)k=0,...,N the following partition of [a, b]:

∀k ∈ {0, ..., N}, tk = a+ k
b− a
N

.

Now, we can de�ne the following discrete embeddings:

De�nition 2 (case σ = +). � We call forward �nite di�erences embedding de-

noted by FDE+ the de�nition of the following elements: the application

disc : C0([a, b],Rd) −→
(
Rd
)N+1

q 7−→ (q(tk))k=0,...,N

.

and the discrete operator

∆+ :
(
Rd
)N+1 −→

(
Rd
)N

Q = (Qk)k=0,...,N 7−→
(
Qk−Qk+1

h

)
k=0,..,N−1

De�nition 3 (case σ = −). � We call backward �nite di�erences embedding de-

noted by FDE− the de�nition of the following elements: the application

disc : C0([a, b],Rd) −→
(
Rd
)N+1

q 7−→ (q(tk))k=0,...,N

.
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and the discrete operator

∆− :
(
Rd
)N+1 −→

(
Rd
)N

Q = (Qk)k=0,...,N 7−→
(
Qk−Qk−1

h

)
k=1,..,N

We use these notations in order to be uniform with fractional notations (in sections 5-6).

Let us notice that the discrete analogous of
d

dt
in FDEσ is then −σ∆σ.

1.2. Direct discrete embedding. � De�ning a discrete embedding allows us to de�ne

a direct discrete version of a di�erential equation:

De�nition 4. � Let be �xed a discrete embedding de�ned as in de�nition 1 and let (E)

be an ordinary di�erential equation of unknown q ∈ C0([a, b],Rd) given by:

(E) O(q) = 0

where O is a di�erential operator shaped as O =
∑
i

fi(.)
di

dti
o gi(.) where fi, gi are

functions.

Then, the direct discrete embedding of (E) is (Eh) the system of equations of unknown

qh ∈ (Rd)m1 given by:

(Eh) Oh(qh) = 0

where Oh is the discretized operator of O given by Oh =
∑
i

fhi (.) ∆i o ghi (.).

Example 1. � We consider the Newton's equation with friction of unknown q ∈ C0([a, b],Rd)
given by:

(NE) ∀t ∈ [a, b], q̈(t) + q̇(t) + q(t) = 0.

Then, the direct discrete embedding of (NE) with respect to FDE+ is (NEh) the system

of equations of unknown Q ∈ (Rd)N+1 given by:

(NEh) ∀k ∈ {0, ..., N − 2}, Qk+2 − 2Qk+1 +Qk
h2

+
Qk+1 −Qk

h
+Qk = 0.

The direct discrete embedding of an ordinary di�erential equation is strongly depen-

dent on the form of the di�erential operator O (and not on its equivalence class). The

process O −→ Oh is not an application. For example, the discretized operator Oh of

O =
d

dt
o sin(.) =

d

dt
(.) cos(.) is di�erent depending on the writing of O.

2. Discrete embeddings of Lagrangian systems

2.1. Lagrangian systems. � In this section, we recall classical de�nitions and theorems

concerning Lagrangian systems. We refer to [5] for a detailed study and for the proof of

theorem 1.
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De�nition 5. � A Lagrangian functional is an application de�ned by:

(2.1) L : C2([a, b],Rd) −→ R

q 7−→
∫ b

a
L(q(t), q̇(t), t)dt

where L is a Lagrangian i.e. a C2 application de�ned by:

L : Rd × Rd × [a, b] −→ R
(x, v, t) 7−→ L(x, v, t).

Let L be a Lagrangian functional, we denote by DL(q)(w) the Fréchet derivative of L in

q along the direction w in C2([a, b],Rd), i.e.

DL(q)(w) = lim
ε→0

L(q + εw)− L(q)

ε
.

An extremal (or critical point) of a Lagrangian functional L is a trajectory q such that

DL(q)(w) = 0 for any variations w (i.e. w ∈ C2([a, b],Rd), w(a) = w(b) = 0).

Extremals of a Lagrangian functional can be characterized as solution of a di�erential

equation of order 2 given by:

Theorem 1 (Variational principle). � Let L be a Lagrangian functional associated to

the Lagrangian L and let q ∈ C2([a, b],Rd). Then, q is an extremal of L if and only if q is

solution of the Euler-Lagrange equation given by:

(EL) ∀t ∈ [a, b],
∂L

∂x
(q(t), q̇(t), t)− d

dt

(
∂L

∂v
(q(t), q̇(t), t)

)
= 0.

2.2. Direct discrete embedding of the Euler-Lagrange equation. � In this sub-

section, we apply de�nitions of section 1 in order to de�ne the direct discrete embedded

Euler-Lagrange equation.

De�nition 6. � Let L be a Lagrangian and (EL) its associated Euler-Lagrange equation.

The direct discrete embedding of (EL) with respect to FDEσ is given by:

(2.2)
∂L

∂x
(Q,−σ∆σQ, τ) + σ∆σ

(
∂L

∂v
(Q,−σ∆σQ, τ)

)
= 0, Q ∈ (Rd)N+1.

We illustrate this result with the classical example of the mechanical Lagrangian:

(?) L(x, v, t) =
1

2
v2 − U(x), (x, v, t) ∈ Rd × Rd × [a, b]

where U represents the potential energy of the system. The mechanical Lagrangian gives

the following Euler-Lagrange equation:

∀t ∈ [a, b], q̈(t) = −∇U(q(t)), q ∈ C2([a, b],Rd).

Then, by direct discrete embedding with respect to FDE−, we obtain the following

numerical scheme :

∀k ∈ 2, ..., N,
Qk − 2Qk−1 +Qk−2

h2
= −∇U(Qk), Q ∈ (Rd)N+1.
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3. Discrete embeddings and variational integrators on Lagrangian systems

As we said previously, a direct discrete embedding is only based on the form of the

di�erential operator which is dependent of the coordinates system. Then, arises the natural

question of conservation of intrinsic properties of the di�erential equation at the discrete

level. This paper is devoted to the conservation of the Lagrangian structure. In this section,

we introduce variational integrators in the framework of the discrete embedding FDEσ.

3.1. Discrete calculus of variations and discrete embeddings. � In this subsec-

tion, we recall the strategy of variational integrators which are discretizations of Lagrangian

systems preserving their Lagrangian structures. It consists in building the discrete analo-

gous of the variational principle on a discretized Lagrangian functional. For more details,

we refer to [17] and [21]. In our case, the discrete Lagrangian functional is obtained by

giving a discrete embedding as de�ned in section 1.

3.1.1. Discrete Lagrangian functionals. � Giving FDEσ induces the discretization of a

Lagrangian functional as long as a quadrature formula is �xed in order to approximate

integrals (as in (2.1)). We choose the usual σ-quadrature formula of Gauss:

for a continuous function f on [a, b], we discretize

∫ b

a
f(t)dt by

N−1∑
k=0

(tk+1 − tk)f(tk) = h
N−1∑
k=0

f(tk) if σ = +

and:
N∑
k=1

(tk − tk−1)f(tk) = h
N∑
k=1

f(tk) if σ = −.

This process de�nes the Gauss �nite di�erences embedding which we denote by

Gauss-FDEσ. We can now de�ne the following discrete Lagrangian functional:

De�nition 7. � Let L be a Lagrangian functional associated to the Lagrangian L. The

discrete Lagrangian functional associated to L with respect to the discrete embedding

Gauss-FDEσ is given by:

Lσh :
(
Rd
)N+1 −→ R

Q = (Qi)i=0,...,N 7−→ h
∑
k∈Iσ

L(Qk, (−σ∆σQ)k, tk)

where I+ = {0, ..., N − 1} and I− = {1, ..., N}.

Example 2. � Let us consider the Lagrangian functional associated to the mechanical

Lagrangian (?) given by:

L : C2([a, b],Rd) −→ R

q 7−→
∫ b

a

1

2
q̇(t)2 − U(q(t)) dt.
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Then, the discrete Lagrangian functional associated to L with respect to the discrete em-

bedding Gauss-FDE− is given by:

(3.1) L−h :
(
Rd
)N+1 −→ R

Q = (Qi)i=0,...,N 7−→ h
N∑
k=1

1

2

(
Qk −Qk−1

h

)2

− U(Qk).

3.1.2. Discrete calculus of variations. � Let L be a Lagrangian functional and Lσh the

discrete Lagrangian functional associated with respect to Gauss-FDEσ. A discrete

extremal (or discrete critical point) of Lσh is an element Q in (Rd)N+1 such that

DLσh(Q)(W ) = 0 for any discrete variations W (i.e. W ∈ (Rd)N+1, W0 = WN = 0).

Discrete extremals of Lσh can be characterized as solution of a system of equations:

Theorem 2 (Discrete variational principle). � Let Lσh be the discrete Lagrangian func-

tional associated to the Lagrangian L with respect to Gauss-FDEσ. Then, Q in (Rd)N+1

is a discrete extremal of Lσh if and only if Q is solution of the following system of equations

(called discrete Euler-Lagrange equation) given by:

(ELh)
∂L

∂x
(Q,−σ∆σQ, τ)− σ∆−σ

(
∂L

∂v
(Q,−σ∆σQ, τ)

)
= 0, Q ∈ (Rd)N+1.

Thus, the variational integrator with respect to Gauss-FDEσ on (EL) is the numerical

scheme (ELh): it corresponds to the discrete variational principle on the discrete La-

grangian functional de�ned with respect to Gauss-FDEσ.

Example 3. � As in example 2, let us consider the Lagrangian (?). The Gauss-FDE−
leads to the discrete Lagrangian functional L−h given by (3.1). The discrete variational

calculus on L−h gives the associated discrete Euler-Lagrange equation:

∀k ∈ 1, ..., N − 1,
Qk+1 − 2Qk +Qk−1

h2
= −∇U(Qk), Q ∈ (Rd)N+1.

The proof of theorem 2 ([17]) is based on the following result:

Lemma 1 (Discrete integration by parts). � For any F and G in (Rd)N+1, we have:

N∑
k=1

(∆−F )kGk =
N−1∑
k=0

Fk(∆+G)k +
1

h
(fNgN − f0g0).

Discrete integration by parts emphasizes the asymmetric property of discrete operators

∆+ and ∆− which does not exist in the continuous space with the operator d
dt . This

characteristic leads to an asymmetry in (ELh): indeed, we have a composition between

the two discrete operators ∆+ and ∆−. We notice that this asymmetry does not appear

in the continuous space in (EL).
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3.2. No coherence between direct discrete embedding and variational integra-

tor. � We resume in �gure 1 the previous processes in the setting of Gauss-FDEσ.

We are interested in the coherence or not of this discrete embedding: do the direct dis-

crete embedding and the variational integrator lead to the same numerical scheme for the

Euler-Lagrange equation ?

Lagrangian functional L Functional discretization //

Variational principle

��

Discrete Lag. functional Lσh

Discr. var. principle

��
Euler-Lagrange equation (EL)

Direct discrete embdedding

//

Variational integrator

��
Num. schemes (2.2) 6= (ELh)

Figure 1. No coherence between direct discrete embedding and variational inte-

grator of the Euler-Lagrange equation in the setting of Gauss-FDEσ.

The previous study leads to a default of coherence of Gauss-FDEσ. Indeed, algorithms

obtained by direct discrete embedding (2.2) and obtained by discrete variational principle

(ELh) do not coincide. A temporal asymmetry appears in (ELh) which comes (mathe-

matically) from lemma 1.

The direct discrete embedding respects the law of semi-group of the di�erential operator
d
dt :

d2

dt2
=

d

dt
o
d

dt

direct−−−−−−−−→
discretization

(−σ∆σ) o (−σ∆σ) = ∆2
σ.

As it is well-known from the numerical analysis point of view, [9], the composition of

the discrete operator −σ∆σ provides unstable numerical schemes. We loose the order of

approximation of di�erential operator by composition: indeed, ∆2
σ approaches d2

dt2
with an

order 1 and not an order 2.

On the contrary, a variational integrator is not based on the algebraic construction of

the di�erential equation via the di�erential operator but mainly on a dynamical approach

via the extremals of a functional. As a consequence, the discrete Euler-Lagrange equation

(ELh) does not necessary respect the algebraic property of composition. Nevertheless, the

variational integrator uses the composition of discrete operators −∆+ and ∆− and this

composition provides an approximation of d2

dt2
with an order 2.

The problem is to understand why this asymmetry does not appear with direct dis-

crete embedding ? It seems that we miss dynamical informations in the formulation of
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Lagrangian systems at the continuous level which are pointed up in the discrete space with

the asymmetric discrete operators (−σ∆σ)σ=±.

This default of coherence can be corrected using a di�erent writing of the initial Euler-

Lagrange equation. Indeed, we introduce in section 4 di�erential operators which conserve

the temporal asymmetry in the continuous space: namely the asymmetric derivatives.

4. Discrete embedding of asymmetric Lagrangian systems

The usual way to derive di�erential equations in Physics is to built a continuous model

using discrete data. However, this process gives only an information in one direction of

time. As a consequence, a discrete evaluation of the velocity corresponds in general at the

continuous level to the evaluation of the right or left derivative. In general, we replace the

right (or left) derivative by the classical derivative d
dt . However, this procedure assumes

that the underlying solution is di�erentiable. This assumption is not only related to the

regularity of the solutions but also to the reversibility of the systems (the right and left

derivatives are equal). In this section, we introduce asymmetric Lagrangian systems which

are obtained with functionals depending only on left or only on right derivatives. We prove

in this case that Gauss-FDEσ is coherent.

4.1. Asymmetric notations and asymmetric integration by parts. � Like opera-

tors −∆+ and ∆−, we de�ne di�erential operators which use only either future informations

or past informations. They are just the minus right and the left classical derivatives:

De�nition 8. � For f : [a, b] −→ Rd smooth enough function, we denote:

∀t ∈ [a, b[, d+f(t) = lim
h→0+

f(t)− f(t+ h)

h

and

∀t ∈]a, b], d−f(t) = lim
h→0+

f(t)− f(t− h)

h
.

Of course, for a di�erentiable function f , we have d−f = −d+f = ḟ . However, as we are

going to see in the next subsection, it is interesting to use these notations in order to keep

dynamical informations.

Lemma 2 (Asymmetric integration by parts). � For f, g : [a, b] −→ Rd smooth

enough functions, we have:∫ b

a
d−f(t)g(t)dt =

∫ b

a
f(t)d+g(t)dt+ f(b)g(b)− f(a)g(a).

Let us notice that the asymmetric integration by parts is the continuous analogous of the

discrete integration by parts (see lemma 1).
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4.2. Asymmetric Lagrangian systems. � In this section, we introduce asymmetric

Lagrangian systems which take into account the temporal asymmetry by using the di�er-

ential operator −σdσ.

De�nition 9. � An asymmetric Lagrangian functional is an application:

Lσ : C2([a, b],Rd) −→ R
q 7−→

∫ b
a L(q(t),−σdσq(t), t)dt

where L is a Lagrangian.

Then, we obtain the following characterization of the extremals of an asymmetric La-

grangian functional as solution of an asymmetric di�erential equation:

Theorem 3 (Variational principle). � Let Lσ be an asymmetric Lagrangian functional

associated to the Lagrangian L and let q ∈ C2([a, b],Rd). Then, q is an extremal of Lσ if

and only if q is solution of the asymmetric Euler-Lagrange equation:

(ELσ) ∀t ∈]a, b[, ∂L
∂x (q(t),−σdσq(t), t)− σd−σ

(
∂L
∂v (q,−σdσq, .)

)
(t) = 0.

Indeed, by using the asymmetric integration by parts in the proof of theorem 3, the asym-

metry appears in (ELσ). Its origin is the continuous analogous of the asymmetry in (ELh).

Now, we are interested in discrete embeddings of the asymmetric Euler-Lagrange equation.

4.3. Direct discrete embeddings and variational integrators of asymmetric La-

grangian systems. � In order to discretize (ELσ), we have to discretize two di�erential

operators at the same time. In the discrete space, we replace the di�erential operator d+

(respectively d−) by ∆+ (respectively by ∆−). Then, we obtain an asymmetric version of

the Gauss �nite di�erences embedding mixing ∆+ and ∆−:

De�nition 10. � We call the asymmetric Gauss-FDEσ embedding the de�nition of

the following elements: the application

disc : C0([a, b],Rd) −→
(
Rd
)N+1

q 7−→ (q(ti))i=0,...,N

.

the σ-quadrature formula of Gauss and the discrete operators

∆+ :
(
Rd
)N+1 −→

(
Rd
)N

Q = (Qi)i=0,...,N 7−→
(
Qi−Qi+1

h

)
i=0,..,N−1

and

∆− :
(
Rd
)N+1 −→

(
Rd
)N

Q = (Qi)i=0,...,N 7−→
(
Qi−Qi−1

h

)
i=1,..,N

These discrete operators are respectively the discrete versions of the operators d+ and d−

in the asymmetric Gauss-FDEσ.
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De�nition 11. � Let L be a Lagrangian and (ELσ) the asymmetric Euler-Lagrange

equation associated. The direct discrete embedding of (ELσ) with respect to the asym-

metric Gauss-FDEσ is given by:

∂L

∂x
(Q,−σ∆σQ, τ)− σ∆−σ

(
∂L

∂v
(Q,−σ∆σQ, τ)

)
= 0, Q ∈ (Rd)N+1.

Lat us notice that the direct discrete embedding of the asymmetric Euler-Lagrange equation

gives the discrete Euler-Lagrange equation (ELh) (see de�nition 2). Obviously, as the

asymmetric Gauss-FDEσ gives the same discrete Lagrangian functional as the symmetric

case, we deduce the coherence of this discrete embedding.

We notice that the asymmetric Gauss-FDEσ uni�es the algebraic approach and the

dynamical approach in order to discretize Lagrangian systems. Indeed, the discrete and

continuous versions of the asymmetric di�erential operators satisfy the same algebraic

properties (temporal asymmetry, asymmetric integration by parts,...).

5. Introduction to fractional calculus

5.1. Notions of Grünwald-Letnikov and Riemann-Liouville. � Fractional calcu-

lus is the generalization of the derivative notion to real orders. There are many ways

generalize this notion. We can generalize the derivative of a monomial and then generalize

the derivative of functions which can be written in power series. We can do the same thing

by generalizing derivative of an exponential or again derivative of cosinus and sinus. We

can also use a generalization of the derivative by using a convolution. For more details, we

refer to [19].

In this paper, we are going to use the classical notions of Grünwald-Letnikov and

Riemann-Liouville. The following de�nitions and results are extracted from [22].

5.1.1. Fractional derivatives of Grünwald-Letnikov. � The notion of Grünwald-Letnikov

comes from this simple result proved by induction:

let f be a smooth enough function de�ned on [a, b] and let n ∈ N, then:

∀t ∈]a, b], f (n)(t) = lim
h→0+

1

hn

n∑
r=0

(−1)rCrnf(t− rh)

where Crn =
n(n− 1)...(n− r + 1)

r!
.

From this formula, Grünwald-Letnikov obtains this following generalization:

De�nition 12. � Let α > 0 and let f be an element of Cn+1([a, b],Rd) where n = [α].

Grünwald-Letnikov fractional left derivative of order α with inferior limit a of

f is:

∀t ∈]a, b], Dα
−f(t) = lim

h→0
nh=t−a

1

hα

n∑
r=0

(−1)rCrαf(t− rh).
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Grünwald-Letnikov fractional right derivative of order α with superior limit b

of f is:

∀t ∈ [a, b[, Dα
+f(t) = lim

h→0
nh=b−t

1

hα

n∑
r=0

(−1)rCrαf(t+ rh).

5.1.2. Fractional derivatives of Riemann-Liouville. � The notion of Riemann-Liouville

comes from this other simple result proved by induction:

let f be a continuous function on [a, b], let t in [a, b] and let n ∈ N, then:∫ t

a

∫ t1

a
...

∫ tn−1

a
f(tn)dtn...dt1 =

1

(n− 1)!

∫ t

a
(t− y)n−1f(y)dy.

From this formula, Riemann-Liouville obtains a generalization of the integral notion:

De�nition 13. � Let α > 0 and let f be a continuous function.

Riemann-Liouville fractional left integral of order α with inferior limit a is:

∀t ∈ [a, b], RLD
−α
− f(t) :=

1

Γ(α)

∫ t

a
(t− y)α−1f(y)dy.

Riemann-Liouville fractional right integral of order α with superior limit b is:

∀t ∈ [a, b], RLD
−α
+ f(t) :=

1

Γ(α)

∫ b

t
(y − t)α−1f(y)dy.

where Γ is the Gamma function which is an extension of the factorial function.

Finally, Riemann and Liouville obtain a generalization of the derivative notion by derivating

fractional integrals:

De�nition 14. � Let α > 0 and let f be an element of Cn+1([a, b],Rd) where n = [α].

Riemann-Liouville fractional left derivative of order α with inferior limit a is:

∀t ∈]a, b], RLD
α
−f(t) :=

dn+1

dtn+1

(
RLD

α−(n+1)
− f

)
(t).

Riemann-Liouville fractional right derivative of order α with superior limit b

is:

∀t ∈ [a, b[, RLD
α
+f(t) :=

dn+1

dtn+1

(
RLD

α−(n+1)
+ f

)
(t).

5.2. Links between these di�erent notions. � Although the two approaches are

di�erent, they are linked by the following result, [22]:

Theorem 4. � Let α > 0, a < b two reals and n = [α]. Let f be a function in

Cn+1([a, b],Rd) then the notion of fractional derivative of Riemann-Liouville and the one

of Grünwald-Letnikov coincide. So we denote:

RLD
α
−f(t) = Dα

−f(t)

and

RLD
α
+f(t) = Dα

+f(t).
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Now, the following result proves that the Riemann-Liouville's and the Grünwald-Letnikov's

fractional derivative notion is actually an extension of the classical derivative notion:

Proposition 1. � Let n ∈ N∗ and f be an element of Cn+1([a, b],Rd). Then, the following
equalities hold:

Dn
−f = f (n) and Dn

+f = (−1)nf (n)

There exist fractional left derivatives and fractional right derivatives: this notion takes into

account the temporal asymmetry. Moreover, there exists a formula of fractional integration

by parts:

Lemma 3 (Fractional integration by parts). � Let 0 < α < 1 and let f and g be

two functions in C1([a, b],Rd). We suppose that f(a) = f(b) = 0 or g(a) = g(b) = 0. Then,

we have: ∫ b

a
Dα
−f(y)g(y)dy =

∫ b

a
f(y)Dα

+g(y)dy.

Let us notice that the fractional integration by parts is the fractional analogous of lemma

2: it transforms right fractional derivative into left fractional derivative. We will see that

we have same behaviors in the discrete space with the discretized fractional operators (see

lemma 4).

6. Discrete embeddings of fractional Lagrangian systems

In recent years, an important activity has been devoted to fractional Lagrangian systems

for the purpose of optimal control, mechanics, engineering and Physics ([2], [4], [16]). There

also exist many studies concerning the discretization of fractional di�erential equations ([2],

[6], [3], [7], [8]).

In this section, following our previous approach on classical Lagrangian systems, we

de�ne fractional discrete embeddings and fractional variational integrators. We prove that

a fractional discrete embedding is coherent.

6.1. Fractional Lagrangian systems. �

De�nition 15. � A fractional Lagrangian functional of order 0 < α < 1 is an

application de�ned by:

(6.1) Lσ : C2([a, b],Rd) −→ R
q 7−→

∫ b
a L(q(t),−σDα

σq(t), t)dt

where L is a Lagrangian.

We can give a characterization of extremals of a fractional Lagrangian functional as solu-

tions of a fractional di�erential equation:
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Theorem 5 (Variational principle). � Let Lσ be a fractional Lagrangian functional of

order 0 < α < 1 associated to the Lagrangian L and let q be an element of C2([a, b],Rd).
Then, q is an extremal of Lσ if and only if q is solution of the fractional Euler-Lagrange

equation:

(ELf ) ∀t ∈]a, b[, ∂L
∂x (q(t),−σDα

σq(t), t)− σDα
−σ
(
∂L
∂v (q,−σDα

σq, .)
)

(t) = 0.

As in the asymmetric case, by using the fractional integration by parts, we obtain a frac-

tional di�erential equation which presents a temporal asymmetry. Indeed, in (ELf ), we

have a composition of the Dα
+ operator and the Dα

− operator.

6.2. Direct Gauss Grünwald-Letnikov embeddings of fractional Lagrangian sys-

tems. � We are interested in discrete embeddings of fractional Lagrangian systems. By

referring to the notion of Grünwald-Letnikov ([15]), we give the following de�nition:

De�nition 16. � TheGauss Grünwald-Letnikov embedding denoted by Gauss-GLEσ

the de�nition of the following elements: the application

disc : C0([a, b],Rd) −→
(
Rd
)N+1

q 7−→ (q(ti))i=0,...,N

.

the σ-quadrature formula of Gauss and the discrete operators

∆α
− : (Rd)N+1 −→ (Rd)N

Q = (Qk)k=0,...,N 7−→

(
1

hα

k∑
r=0

(−1)rCrαQk−r

)
k=1,..,N

and

∆α
+ : (Rd)N+1 −→ (Rd)N

Q = (Qk)k=0,...,N 7−→

(
1

hα

N−k∑
r=0

(−1)rCrαQk+r

)
k=0,..,N−1

.

These discrete operators are respectively discretized operators of the operators Dα
− and Dα

+.

With such discrete operators, we have a formula of discrete fractional integration by parts

which is exactly the discrete analogous of the fractional integration by parts at the contin-

uous level (see lemma 3):

Lemma 4 (Discrete fractional integration by parts). � Let F and G be elements

of (Rd)N+1 such that F0 = FN = 0 or G0 = GN = 0. Then, we have:

N∑
k=1

(∆α
−F )kGk =

N−1∑
k=0

Fk(∆
α
+G)k.

Proof. � The proof of this lemma is only based on the inversions of the two sums and on

substitution of variables in the sums. We prove the lemma only in the case F0 = FN = 0.
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The case G0 = GN = 0 is similar.

As FN = 0, we can sum k from 0 to N and we obtain by de�nition of (∆α
+G)k:∑N−1

k=0 Fk(∆
α
+G)k = 1

hα
∑N

k=0

∑N−k
r=0 (−1)rCrαFkGk+r

= 1
hα
∑N

r=0

∑N−r
k=0 (−1)rCrαFkGk+r

= 1
hα
∑N

r=0

∑N
k=r(−1)rCrαFk−rGk

= 1
hα
∑N

k=0

∑k
r=0(−1)rCrαFk−rGk

Then, as F0 = 0, we can sum k only from 1 to N and we obtain:∑N−1
k=0 Fk(∆

α
+G)k =

∑N
k=1Gk

1
hα
∑k

r=0(−1)rCrαFk−r

=
∑N

k=1(∆
α
−F )kGk.

As in the asymmetric case, we notice that fractional operators and their discretized take

into account the temporal asymmetry. The integration by parts on these operators leads

to the same behavior: the fractional right derivative is transformed into the fractional left

derivative. Then, we can expect the coherence of Gauss-GLEσ. Now, let us give the

de�nition of the direct discrete embedding of (ELf ) with respect to Gauss-GLEσ:

De�nition 17. � Let 0 < α < 1 and let L be a Lagrangian and (ELf ) the fractional

Euler-Lagrange equation associated to L. The direct discrete embedding of (ELf ) with

respect to Gauss-GLEσ is given by:

(6.2)
∂L

∂x
(Q,−σ∆α

σQ, τ)− σ∆α
−σ

(
∂L

∂v
(Q,−σ∆α

σQ, τ)

)
= 0, Q ∈ (Rd)N+1.

6.3. Discrete calculus of variations on discrete fractional Lagrangian function-

als. � Giving Gauss-GLEσ allows us to de�ne the discretization of fractional Lagrangian

functionals:

De�nition 18. � Let 0 < α < 1 and let Lσ be the fractional Lagrangian functional asso-

ciated to the Lagrangian L. The discrete fractional Lagrangian functional associated

to Lσ with respect to the embedding Gauss-GLEσ is given by:

Lσh :
(
Rd
)N+1 −→ R

Q = (Qi)i=0,...,N 7−→ h
∑
k∈Iσ

L(Qk, (−σ∆α
σQ)k, tk),

where I+ = {0, ..., N − 1} and I− = {1, ..., N}.

Discrete extremals of Lσh can be characterized as solution of a system of equations:
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Theorem 6 (Discrete variational principle). � Let 0 < α < 1 and let Lσh be a dis-

crete fractional Lagrangian functional associated to the Lagrangian L with respect to the

discrete embedding Gauss-GLEσ. Then, Q in (Rd)N+1 is a discrete extremal of Lσh if and

only if Q is solution of the following system of equations, called the discrete fractional

Euler-Lagrange equation:

(ELf,h)
∂L

∂x
(Q,−σ∆α

σQ, τ)− σ∆α
−σ(

∂L

∂v
(Q,−σ∆α

σQ, τ)) = 0, Q ∈ (Rd)N+1.

Proof. � We write the proof only in the case σ = −. The proof in the case σ = + is

similar.

Let Q in (Rd)N+1 and W a discrete variation of (Rd)N+1. Then:

L−h (Q+W ) = h
N∑
k=1

L(Qk +Wk, (∆
α
−Q)k + (∆α

−W )k, tk)

= L−h (Q) + h

N∑
k=1

∂L

∂x
(Qk, (∆

α
−Q)k, tk)Wk +

∂L

∂v
(Qk, (∆

α
−Q)k, tk)(∆

α
−W )k

+o(‖W‖)

where o is the Landau's notation. Thus, by de�nition of the di�erential, we obtain:

DL−h (Q)(W ) = h

N∑
k=1

∂L

∂x
(Qk, (∆

α
−Q)k, tk)Wk +

∂L

∂v
(Qk, (∆

α
−Q)k, tk)(∆

α
−W )k

Since W is a discrete variation of (Rd)N+1, W0 = WN = 0. By applying the discrete

fractional integration by parts on the second term of the previous sum, we obtain:

DL−h (Q)(W ) = 0⇐⇒ h
N−1∑
k=1

(
∂L

∂x
(Qk, (∆

α
−Q)k, tk) + (∆α

+(
∂L

∂v
(Q,∆α

−Q, τ)))k

)
Wk = 0.

Thus, Q is a discrete extremal of L−h if and only if Q is solution of the discrete fractional

Euler-Lagrange equation (ELf,h) as de�ned in theorem 6.

As we expected before, we notice that we have coherence of the discrete embedding Gauss-

GLEσ of the fractional Euler-Lagrange equation. Indeed, formulas (6.2) and (ELf,h)

coincide.

7. Conclusion

In this paper, we have introduced the notion of discrete embeddings and constructed

the corresponding variational integrators in the classical and fractional cases. The discrete

embedding has to conserve the integration by parts on the discrete level in order to be

coherent.

The Gauss �nite di�erences embedding or Grünwald-Letnikov embedding are only here

as illustration of our point of view. In order to construct more e�cient numerical schemes,
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one can choose appropriate discretization for the di�erential operators and also more elab-

orate quadrature formulas for integrals. In particular, we can have a look in [15] for special

discretization of the fractional derivatives.

In [23], Riewe has introduced fractional Lagrangian functionals in order to model dissi-

pative e�ects. However, his formalism does not provide an equivalence between solutions

of a dissipative equation and critical points of fractional Lagrangian functional. Moreover,

his construction is based on very stringent assumptions on functions. The asymmetric

fractional calculus of variations (where the functional space is split in two) introduced in

[13] solves this problem and provides a full equivalence between critical points of an asym-

metric fractional Lagrangian functional and solutions of a dissipative system (as the linear

friction case or the di�usion equation for example). A natural extension of our work is to

extend the fractional discrete embedding to cover the asymmetric fractional case.

Several di�culties arise in the numerical study of the convection-di�usion equation,

in particular the presence of non physical numerical oscillations for high values of the

Reynolds number. An asymmetric fractional Lagrangian formulation of the convection-

di�usion equation is obtained in [12]. Our idea is to construct an adapted fractional

variational integrator in order to control the discrete solutions of the numerical scheme.

This will be done in a forthcoming paper.
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