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Abstract. � We study the positivity of solutions of a class of semi-linear parabolic systems of

stochastic partial di�erential equations by considering random approximations. For the family of

random approximations we derive explicit necessary and su�cient conditions such that the solu-

tions preserve positivity. These conditions imply the positivity of the solutions of the stochastic

system for both Itô's and Stratonovich's interpretation of stochastic di�erential equations.

1. Introduction

We study the positivity of solutions of systems of semi-linear parabolic equations under

stochastic perturbations. The systems are of the form

dul(x, t) =
(
−

m∑
i=1

Ali(x,D)ui(x, t) + f l(x, t, u(x, t))
)
dt+

∞∑
i=1

qjg
l
j(x, t, u(x, t))dW j

t ,(1)

l = 1, . . . ,m, where x ∈ O, O ⊂ Rn is a bounded domain, and t > 0. The function u =

(u1, . . . , um) is a vector-valued, Ali are linear elliptic operators of second order, and the non-

linearity f = (f1, . . . , fm) takes values in Rm. Moreover, we assume that {W j
t , t ≥ 0}j∈N

is a family of independent standard scalar Wiener processes on the canonical Wiener space

(Ω,F ,P), and dW j
t denotes the corresponding Itô di�erential. The non-negative parameters
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qj are normalization factors and the functions glj are real-valued, l = 1, . . . ,m, j ∈ N. The

boundary conditions are given by the operators (B1, . . . , Bm),

Bl(x,D)ul(x, t) = 0 x ∈ ∂O, t > 0, l = 1, . . . ,m,

and the solution satis�es the initial conditions

ul(0, x) = ul0(x) x ∈ Ō, l = 1, . . . ,m.

We interpret the stochastic system in the sense of Itô, denote by (A, f, g) stochastic systems

of the form (1), and the corresponding unperturbed deterministic system by (A, f, 0). Our

aim is to derive explicit conditions on the coe�cient functions of the operators Ali and the

functions f and g to ensure that the solutions of System (1) preserve positivity. The explicit

characterization is important as it allows to verify mathematical models arising in various

applications, where the solutions describe positive quantities (see [5]). In this case, that is, if

solutions emanating from non-negative initial data remain non-negative as long as they exist,

we say that the system satis�es the positivity property. To study the positivity of solutions of

the stochastic system we construct a family of random PDEs such that its solutions converge

in expectation to the solution of the stochastic system. We are in particular interested in

characterizing the class of stochastic perturbations g such that the family of random approx-

imations satis�es the positivity property, which then implies the positivity of solutions of the

stochastic system. Moreover, we prove that the positivity is preserved for both, Itô's and

Stratonovich's interpretation of stochastic di�erential equations (see [7]).

Applications that fall into the class of stochastic models (1) are for instance predator-prey

systems under stochastic perturbations. We give an example that was discussed in [2] (Section

5), further applications can be found in [3] (Section 6). The deterministic model is formulated

as reaction-di�usion system for the predator u and the prey v in a bounded spatial domain

O ⊂ R3, (
∂tu
∂tv

)
=

(
∆u
∆v

)
+D(u, v)

(
u
v

)
,

where the matrix D(u, v) is of the form

D(u, v) =

(
β1
(∣∣ v
u

∣∣) cβ2
(∣∣ v
u

∣∣)
0

[
γ − β2

(∣∣ v
u

∣∣)]) ,
and the solutions satisfy homogeneous Neumann boundary conditions. The constants c and

γ are positive, and the functions β1, β2 : R+ → R+ non-negative. It can be veri�ed by our

deterministic positivity criterion (see Theorem 3 in Section 2.2) that the system preserves

positivity. The model includes a certain uncertainty since it is impossible to determine the

exact model parameters γ, β1 and β2 (see [2]). One possibility to take this into account is to
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add noise, which leads to the following stochastic model(
∂tu
∂tv

)
=

(
∆u
∆v

)
+
[
D(u, v) + dWt Id

](u
v

)
,(2)

where Id denotes the identity matrix. Our main result (Theorem 5 in Section 3.2) implies

that the positivity of solutions is also preserved by the stochastic system (2), and this is valid

independent of the choice of Itô's or Stratonovich's interpretation of stochastic di�erential

equations.

The outline of the paper is as follows: In the introductory sections we present our problem,

explain our strategy to study the positivity property of stochastic systems and formulate our

main result. We specify the class of deterministic systems we consider in Section 2 and formu-

late necessary and su�cient conditions for the positivity of solutions of semi-linear parabolic

PDEs. The positivity property of stochastic systems is analysed in Section 3. Our proof is

based on the deterministic result and essentially uses an approximation theorem for stochas-

tic systems. This random approximation theorem was obtained by Chueshov-Vuillermot in

[3] and is recalled in Subsection 3.1. Finally, in Subsection 3.2 we formulate and prove our

positivity criterion for stochastic systems.

1.1. Deterministic case. � Random equations can be interpreted pathwise and allow to

apply deterministic methods. The random approximations lead to a family of non-autonomous

parabolic systems. For autonomous deterministic systems of quasi-linear and semi-linear PDEs

necessary and su�cient conditions for the positivity of solutions were obtained in [5]. Gener-

alizing the results for non-autonomous deterministic systems of the form (A, f, 0) we deduce

the following criterion (see Theorem 3 in Section 2).

Theorem 1. � Under appropriate conditions on the coe�cient functions of the operators

A and B the deterministic system (A, f, 0) satis�es the positivity property if and only if the

di�erential operators are diagonal, and the components of the interaction function satisfy

f l(x, t, u1, . . . , ul−1, 0, ul+1, . . . , um) ≥ 0 for x ∈ O, t ≥ 0, uk ≥ 0, k, l = 1, . . . ,m.

This theorem yields explicit conditions on the coe�cients of the di�erential operator A and the

interaction function f , which are easy to verify, and allows to validate mathematical models

(see [8], Section 4.3, p.76, and [5]). As a consequence, it su�ces to consider stochastic systems

with diagonal di�erential operators

dul(x, t) =
(
−Al(x,D)ul(x, t) + f l(x, t, u(x, t))

)
dt+

∞∑
i=1

qjg
l
j(x, t, u(x, t))dW j

t ,(3)

l = 1, . . . ,m, where x ∈ O and t > 0. In the sequel we denote by (f, g) the system of SPDEs

(3) and the corresponding unperturbed deterministic system by (f, 0).
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1.2. Stochastic case. � To analyse the stochastic problem (f, g) with diagonal di�eren-

tial operator A we use a Wong-Zakaï type approximation theorem, which was obtained by

Chueshov-Vuillermot in [3], and yields a family of random approximations (fε,ω, 0) for the

stochastic system. The solutions of the random approximations do not converge to the solu-

tion of the original system, but to the solution of a modi�ed stochastic system. Hence, we

�rst construct in Section 3.2 an auxiliary stochastic system (F, g) such that the solutions of

the corresponding random approximations (Fε,ω, 0) converge to the solution of our original

problem (f, g). We apply the deterministic result to derive explicit necessary and su�cient

conditions for the positivity property of the random systems (Fε,ω, 0). Since these conditions

are preserved by the random approximations and are invariant under the transformation relat-

ing the original and the modi�ed system, our main result yields an explicit characterization of

the stochastic perturbations g and interaction functions f to ensure that the stochastic system

(f, g) satis�es the positivity property. Furthermore, the conditions for the positivity property

of the random PDEs are invariant under the transformation relating the equations obtained

through Itô's and Stratonovich's interpretation. Our main result, stated in the following

theorem, is therefore independent of the choice of interpretation:

Theorem 2. � Let (f, g) be a system of stochastic PDEs of the form (3), which is interpreted

in the sense of Itô or Stratonovich. Then, the associated family of random approximations

(Fε,ω, 0) satis�es the positivity property if and only if the interaction term satis�es

f l(x, t, u1, . . . , ul−1, 0, ul+1, . . . , um) ≥ 0 x ∈ O, t ≥ 0, for uk ≥ 0,

and the stochastic perturbation g ful�ls

glj(x, t, u
1, . . . , ul−1, 0, ul+1, . . . , um) = 0 x ∈ O, t ≥ 0, for uk ≥ 0,

for all j ∈ N and k, l = 1, . . . ,m. In this case, the stochastic system (f, g) satis�es the

positivity property.

Remark 1. � Up to the author's knowledge for systems of stochastic PDEs only su�cient

conditions for the positivity of solutions are known. Initially, we were hoping to obtain a

stronger result. Namely, that the stochastic system (f, g) satis�es the positivity property if

and only if the stochastic perturbation g and the interaction function f satisfy the conditions

in Theorem 2. P. Kotelenez proved this equivalence in [6] for scalar parabolic equations.

His proof is not based on random approximations. While the su�ciency of the conditions

is formulated in our theorem, showing the necessity is more involved since we cannot deduce

the non-negativity of solutions of the random approximations from the non-negativity of the

solutions of the stochastic system. Hence, we cannot directly apply the necessary conditions

known in the deterministic case.
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2. The Deterministic Case - Necessary and Su�cient Conditions for Positivity

2.1. Semi-linear Systems of Parabolic PDEs. � Necessary and su�cient conditions for

autonomous systems of semi-linear and quasi-linear reaction-di�usion-convection-equations

were studied in [5]. We cannot directly apply these results in our case since the Wong-

Zakaï approximations lead to a family of parabolic systems with time-dependent interaction

functions. In this section we formulate a generalization of one of the theorems in [5] allowing

for non-autonomous interaction functions and arbitrary linear elliptic di�erential operators of

second order. For its proof we refer to [4], which uses the same methods and ideas as applied

in the mentioned article.

To be more precise, we consider the following class of systems of semi-linear parabolic equations

∂tu
l(x, t) = −

m∑
i=1

Ali(x,D)ui(x, t) + f l(x, t, u(x, t)) x ∈ O, t > 0,(4)

where u = (u1, . . . , um) is a vector-valued function, and O ⊂ Rn, n ∈ N, is a bounded domain

with smooth boundary ∂O.

Assumptions on the operator A

The linear second order di�erential operators Ali(x,D) are de�ned as

Ali(x,D) = −
n∑

k,j=1

ailkj(x)∂xk∂xj +

n∑
k=1

ailk (x)∂xk for x ∈ O, i, l = 1, . . . ,m.

Compared to the setting in [3] we omit the zero-order terms in the operator A as for our

problem it seems more natural to absorb these terms in the interaction function f . We assume

that the coe�cient functions satisfy ailkj = ailjk, and the operators are uniformly elliptic,

n∑
k,j=1

ailkj(x)ζkζj ≥ µ|ζ|2 for all x ∈ O, ζ ∈ Rn, i, l = 1, . . . ,m.

Moreover, all coe�cient functions of the operatorA are continuously di�erentiable and bounded

in the domain O.

Assumptions on the boundary operators B

The boundary values of the solution are determined by the operators

Bl(x,D) = bl0(x) + δl
n∑
k=1

blk(x)∂xk l = 1, . . . ,m,

where δl ∈ {0, 1}. The functions blk, b
l
0 are smooth on the boundary ∂O and satisfy bl0 ≥ 0.

Moreover, we assume bl0 ≡ 1 for δl = 0, and bl = (bl1, . . . , b
l
m) is an outward pointing, nowhere
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tangent vector-�eld on the boundary ∂O.

Assumptions on the non-linear interaction term f

For the interaction function we assume that the partial derivatives ∂uf
l exist and are continu-

ous, l = 1, . . . ,m. Moreover, we assume that for x ∈ O and t > 0 the functions f l = f l(x, t, u)

and ∂uf
l = ∂uf

l(x, t, u) are bounded for bounded values of u.

2.2. A Positivity Criterion. � To formulate our criterion for the positivity of solutions

we de�ne the positive cone in L2(O;Rm).

De�nition 1. � The positive cone is the set of all componentwise non-negative functions

in L2(O;Rm),

K+ := {u ∈ L2(O;Rm) | ui ≥ 0 a.e. in O, i = 1, . . . ,m}.

Furthermore, we say that System (4) satis�es the positivity property if every solution

u( · , · ;u0) : O × [0, T ]→ Rm originating from non-negative initial data u0 ∈ K+ remains

non-negative (as long as it exists); that is, u( · , t;u0) ∈ K+ for t ∈ [0, T ]. Thereby, [0, T ]

denotes the maximal existence interval of the solution.

Our concern is not to study the existence of solutions but their qualitative behaviour. Hence,

in the sequel we assume that for any initial data u0 ∈ K+ there exists a unique solution,

and for t > 0 the solution satis�es L∞-estimates. The following theorem provides a criterion

for the positivity property of System (4) and generalizes the previous result for semi-linear

systems in [5].

Theorem 3. � Let the operators A and B be de�ned as in the beginning of this section and

the above conditions on the coe�cient functions of the operators and interaction functions be

satis�ed. Moreover, we assume the initial data u0 ∈ K+ is smooth and ful�ls the compatibil-

ity conditions. Then, System (4) satis�es the positivity property if and only if the matrices(
ailkj
)
1≤i,l≤m and

(
ailk
)
1≤i,l≤m are diagonal for all 1 ≤ j, k ≤ n, and the components of the

reaction term satisfy

f i(x, t, u1, . . . , 0︸︷︷︸
i

, . . . , um) ≥ 0, for x ∈ O, t > 0, uk ≥ 0, i, k = 1 . . .m.(5)

This theorem can be proved by extending the method applied in [5], for a detailed proof we

refer to the forthcoming article [4].

Consequently, it su�ces to consider stochastic perturbations of systems of semi-linear PDEs

of the form (3). A Wong-Zakaï approximation theorem for such systems was obtained in [3].
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3. The Stochastic Case - Necessary and Su�cient Conditions for the Positivity

of Random Approximations

We use a Wong-Zakaï-type approximation theorem and associate to a given stochastic system

(f, g) a suitable family of random approximations. The result of the previous section yields

necessary and su�cient conditions for the positivity property of the family of random PDEs.

Since the solutions of the random approximations converge in expectation to the solution of

the original problem, theses conditions ensure the positivity property of the stochastic system.

3.1. Wong-Zakaï Approximation and Random Systems of PDEs. � E. Wong and

M. Zakaï ([10],[11]) studied the relation between ordinary and stochastic di�erential equations

and introduced a smooth approximation of the Brownian motion to approximate stochastic

integrals by ordinary integrals. Doing so, they obtain an approximation of the stochastic dif-

ferential equation by a family of random di�erential equations. However, when the smoothing

parameter tends to zero the random solutions do not converge to the solution of the original

stochastic di�erential equation, but a modi�ed one. The appearing correction term is called

Wong-Zakaï correction term. The Wong-Zakaï approximation theorem has been generalized

in various directions. In this section, we brie�y recall the main result by Chueshov-Vuillermot

in [3] about a Wong-Zakaï-type approximation theorem for a class of stochastic systems of

semi-linear parabolic PDEs, which is, in particular, applicable for the systems we consider.

Assumptions on the stochastic perturbations

We assume {W j
t , t ≥ 0}j∈N is a family of mutually independent standard scalar Wiener

processes on the canonical Wiener space (Ω,F ,P), and dW j
t denotes the corresponding Itô

di�erential. The non-negative parameters qj are normalization factors. Moreover, the func-

tions glj : O × [0, T ] × R → R are smooth and assumed to be bounded for bounded values of

the solution, where j ∈ N, l = 1, . . . ,m.

3.1.1. Smooth Predictable Approximation of the Wiener Process. � A general notion of a

smooth predictable approximation of the Wiener process is de�ned by Chueshov and Vuiller-

mot in [3] (De�nition 4.1, p.1440). In the following, we will take their main example as a

de�nition (Proposition 4.2, p.1441).

Let {Wt, t ≥ 0} be a standard scalar Wiener process on the probability space (Ω,F ,P) with

�ltration {Ft, t ≥ 0}. The smooth predictable approximation of {Wt, t ≥ 0} is the family

of random processes {Wε(t), t ≥ 0}ε>0 de�ned by

Wε(t) =

∫ ∞
0

φε(t− τ)Wτdτ,
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where φε(t) = ε−1φ(t/ε), and φ(t) is a function with the properties

φ ∈ C1(R), suppφ ⊂ [0, 1],

∫ 1

0
φ(t)dt = 1.

We will need the following result ([3], p.1442), which states that the derivative of the smooth

predictable approximation Wε, denoted by Ẇε, can be written as a stochastic integral of the

form

Ẇε(t) =

∫ t

t−ε
φε(t− τ)dWτ , t ≥ ε.(6)

As a consequence, Ẇε is Gaussian, which will be fundamental in our proof.

3.1.2. Predictable Smoothing of Itô's Problem and Random Systems. � Using the previously

de�ned family of smooth predictable approximations {W j
ε (t), t ≥ 0}ε>0,j∈N of the Wiener

processes {W j
t , t ≥ 0}j∈N the predictable smoothing of Itô's problem (3) is the family of

random equations

(7) dul(x, t) =
(
−Al(x, t,D)ul(x, t) + f l(x, t, u(x, t))

)
dt+

( ∞∑
j=1

qjgj(x, t, u(x, t))
˙
W j
ε (t)

)
dt,

where l = 1, . . . ,m. Using our notation, we are led to the following de�nition:

De�nition 2. � The smooth random approximation of the stochastic system (f, g)

of PDEs with respect to the smooth predictable approximation {Wε(t), t ≥ 0}ε>0 is the family

of random PDEs (fε,ω, 0), where

f lε,ω(x, t, u(x, t)) = f l(x, t, u(x, t)) +
∞∑
j=1

qjg
l
j(x, t, u(x, t))

˙
W j
ε (t) ε > 0.

3.1.3. A Wong-Zakaï Approximation Theorem. � Following Chueshov and Vuillermot ([3],

p.1436) we consider mild solutions of the stochastic system of PDEs (f, g):

In the following de�nition the family {U(t), t ≥ 0} denotes the linear semigroup generated

by the operator A = (A1, . . . , Am) in L2(O;Rm) with domain

W 2,2
B (O;Rm) := {u ∈W 2,2(O;Rm) : Bu = 0}.

Here, B indicates the boundary operator and

W k,2(O) := {u ∈ L2(O) : Dαu ∈ L2(O) for all |α| ≤ k}.

De�nition 3. � A random function u(x, t, ω) = (u1(x, t, ω), . . . , um(x, t, ω)) is called amild

solution of the stochastic problem (f, g) in the space V = W 1,2
B (O;Rm) on the interval [0, T ],
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if u(t) = u(x, t, ω) ∈ C(0, T ;L2(Ω×O)) is a predictable process such that∫ T

0
E ‖ u(t) ‖2V dt <∞,

and satis�es the integral equation

(8) u(t) = U(t)u0 +

∫ t

0
U(t− τ)f(τ, u(τ))dτ +

∞∑
j=1

qj

∫ t

0
U(t− τ)gj(τ, u(τ))dW j(τ, ω),

where we assume that all integrals in (8) exist.

For further details we refer to [3] and [1].

De�nition 4. � Let (f, g) be a stochastic system of PDEs and u be its mild solution. We

say that the mild solutions uε of a family of random PDEs (Fε,ω, 0) converge to the mild

solution of the stochastic system (f, g) if

lim
ε→0

∫ T

0
E ‖ u(t)− uε(t) ‖2W 1,2(O;Rm) dt = 0.

Thereby, the function uε is a mild solution of the family of random PDEs (Fε,ω, 0) if it satis�es

the integral equation

uε(t) = U(t)u0 +

∫ t

0
U(t− τ)Fε,ω(τ, uε(τ))dτ.

The main result of Chueshov and Vuillermot in [3] is the following (Theorem 4.3, p.1443):

Theorem 4. � Assume that the stated assumptions on the operators A and B and the func-

tions f and g are satis�ed. Moreover, let
∑∞

j=1 qj < ∞, the initial data u0 ∈ C2
B(O;Rm) be

F0-measurable and E‖u0‖rC2(O) < ∞ for some r > 8. We assume the associated system of

random PDEs (fε,ω, 0) has a mild solution uε belonging to the class C(0, T ;Lr(Ω, Xα,p)) for

all 0 ≤ α < 1 and p > 1, and for this solution there exists a constant C independent of ε such

that

sup
t∈[0,T ]

E ‖ uε ‖rLp(O)≤ C for all p > 1.

Then, the mild solutions uε converge to a solution ucor of the corrected stochastic system of

PDEs (fcor, g) when ε tends to zero, where

f lcor = f l +
1

2

∞∑
j=1

q2j

m∑
i=1

gij
∂glj
∂ui

for l = 1, . . .m.

The spaces Xα,,p in Theorem 4 denote the fractional power spaces associated to the operator

A. For further details we refer to [3].
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3.2. A Positivity Criterion for Systems of Stochastic PDEs. � Our aim is to study

the positivity property of the stochastic system (f, g) of the form (3). Hence, in the sequel we

assume that a unique solution of the stochastic initial value problem exists, and the solutions

of the random approximations converge to the solution of the modi�ed stochastic system (cf.

Theorem 4). Su�cient conditions for the existence and uniqueness of solutions under even

more general assumptions can be found in the article [3] (Section 3). Since the solutions of the

random approximations do not converge to the solution of the original system we construct

an auxiliary stochastic system as follows:

� Let (F, g) be a stochastic system of the form (3). The corresponding family of random

approximations (Fε,ω, 0), ε > 0, ω ∈ Ω is explicit, depends on the de�nition of the smooth

approximation Wε of the Wiener process {W (t), t ≥ 0}, and is given by

F lε,ω = F l +

∞∑
j=1

qjg
l
jẆ

j
ε l = 1, . . . ,m.

� Theorem 4 states that the solutions of the random systems converge in expectation to

the solution of the modi�ed stochastic system (Fcor, g), where

F lcor = F l +
1

2

∞∑
j=1

q2j

m∑
i=1

gij
∂glj
∂ui

l = 1, . . . ,m.

� To analyse a given stochastic system (f, g) of the form (3) we therefore construct an

auxiliary system (F, g) (see Equation (9) below) such that the solutions of the associated

system of random PDEs (Fε,ω, 0) converge to the solutions of our original system (f, g).

� We then use the deterministic positivity criterion to derive necessary and su�cient con-

ditions for the positivity property of the family of random approximations (Fε,ω, 0). Fi-

nally, we show that this property is preserved by the transformation relating the original

system and the modi�ed system and by passing to the limit when ε goes to zero.

Let (f, g) be a given system of SPDEs. If we de�ne the auxiliary stochastic system (F, g) by

(9) F l = f l − 1

2

∞∑
j=1

q2j

(
g1j
∂glj
∂u1

+ · · ·+ gmj
∂glj
um

)
l = 1, . . . ,m,

then, the solutions of the family of random PDEs (Fε,ω, 0) converge to the solution of the

original stochastic system (f, g).

Theorem 3 states that the deterministic system (f, 0) satis�es the positivity property if and

only if the the interaction term satis�es Condition (5) in Theorem 3. This motivates the

following de�nition.
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De�nition 5. � We say that the function

f : O × R+ × Rm → Rm, f(x, t, u) = (f1(x, t, u), . . . , fm(x, t, u)),

satis�es the positivity condition if it satis�es Property (5).

The next lemma will be essential for the proof of our main result.

Lemma 1. � Let (f, g) be a given stochastic system of PDEs. We assume that the functions

glj are twice continuously di�erentiable with respect to uk and satisfy

glj(x, t, u
1, . . . , 0︸︷︷︸

l

, . . . , um) = 0 x ∈ O, t > 0, uk ≥ 0,(10)

for all j ∈ N and k, l = 1, . . . ,m. Then, the following statements are equivalent:

(a) The function f satis�es the positivity condition.

(b) The modi�ed function F satis�es the positivity condition.

(c) The associated random functions Fε,ω satisfy the positivity condition for all ε > 0 and

ω ∈ Ω.

Proof. � The proof is a simple computation. Let j ∈ N and 1 ≤ l ≤ m. Since glj is contin-

uously di�erentiable with respect to ul and satis�es glj(x, t, u
1, . . . , ul−1, 0, ul+1, . . . , um) = 0,

we can represent it in the form glj(x, t, u) = ulGlj(x, t, u) with a continuously di�erentiable

function Glj . We obtain for the sum appearing in the Wong-Zakaï correction term

m∑
i=1

gij
∂glj
∂ui

=

m∑
i=1

gij
∂(ulGlj)

∂ui
=
∑
i 6=l

giju
l
∂Glj
∂ui

+ glj
∂(ulGlj)

∂ul
,

which leads to an associated function F of the form

F l = f l − 1

2

∞∑
j=1

q2j

m∑
i=1

gij
∂glj
∂ui

= f l − 1

2

∞∑
j=1

q2j

∑
i 6=l

giju
l
∂Glj
∂ui

+ glj
∂(ulGlj)

∂ul

 .

Due to Assumption (10) we note that the modi�ed function F satis�es the positivity condition

if and only if f satis�es the positivity condition since all correction terms vanish if ul = 0.

Finally, the associated system of random PDEs (Fε,ω, 0) is given by

F lε,ω = F l +
∞∑
j=1

qjg
l
j

˙
W j
ε .

Condition (10) therefore implies

F lε,ω(x, t, u1, . . . , 0︸︷︷︸
l

, . . . , um) = F l(x, t, u1, . . . , 0︸︷︷︸
l

, . . . , um) = f l(x, t, u1, . . . , 0︸︷︷︸
l

, . . . , um),

which concludes the proof of the lemma.
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Applying Lemma 1 we derive necessary and su�cient conditions for the positivity property of

the random approximations.

Theorem 5. � Let (f, g) be a system of stochastic PDEs and (Fε,ω, 0) be the associated family

of random approximations. We assume that the functions glj are twice continuously di�eren-

tiable with respect to uk, for all j ∈ N and k, l = 1, . . . ,m. Then, the family of random

approximations (Fε,ω, 0) satis�es the positivity property for all ω and (su�ciently small) ε > 0

if and only if f satis�es the positivity condition and the stochastic perturbation g ful�ls Property

(10). In this case, the stochastic system (f, g) satis�es the positivity property.

Proof. � Su�ciency: By assumption, the function f satis�es the positivity condition. Since

the stochastic perturbation ful�ls Property (10), Lemma 1 implies the positivity condition for

random functions Fε,ω, ω ∈ Ω, ε > 0. We now apply the deterministic positivity criterion

(Theorem 3) to conclude the non-negativity of the solutions of the random approximations.

Finally, the Wong-Zakaï approximation theorem states that the solutions of the random ap-

proximations (Fε,ω, 0) converge in expectation to the solution of the stochastic system (f, g),

which implies that the stochastic system (f, g) satis�es the positivity property.

Necessity: We assume the family of random PDEs (Fε,ω, 0) satis�es the positivity property.

By Theorem 3 this is equivalent to the positivity condition for the random functions F lε,ω; that

is,

F lε,ω(x, t, ũ) = F l(x, t, ũ) +
∞∑
j=1

qjg
l
j(x, t, ũ)

˙
W j
ε (t) ≥ 0 x ∈ O, t > 0,(11)

where ũ := (u1, . . . , 0︸︷︷︸
l

, . . . , um), uk ≥ 0, k, l = 1, . . . ,m. The derivative of the smooth

approximation Wε(t) of the Wiener process can be represented as the stochastic integral (6)

and takes arbitrary values. Assuming that the function glj(x, t, u
1, . . . , ul−1, 0, ul+1, . . . , um)

is not identically zero, then for su�ciently small ε > 0 we always �nd an ω ∈ Ω such that

the inequality (11) is violated. This proves the necessity of the condition on the stochas-

tic perturbation. If Property (10) holds, the positivity condition for the family of random

approximations is equivalent to the positivity condition for the function f by Lemma 1.

The same result is valid if we apply Stratonovich's interpretation of stochastic di�erential

equations. In other words, the positivity property of solutions of the stochastic system is

independent of the choice of interpretation, which was stated in Theorem 2 in the introduction.

Corollary 1. � Let (f, g) be a system of stochastic (Itô) PDEs. We assume the hypothesis

of Theorem 5 are satis�ed and the family of random approximations (Fε,ω, 0) satis�es the
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positivity property. Then, the stochastic system (f, g)Strat obtained when we use Stratonovich's

interpretation of the stochastic di�erential equations satis�es the positivity property.

Proof. � The Wong-Zakaï correction term coincides with the transformation relating Ito's

and Stratonovich's interpretation of the stochastic system (see [9], Section 6.1). That is,

the solutions of the random approximations (fε,ω, 0) converge to the solution of the given

stochastic system, when interpreted in the sense of Stratonovich. Hence, the corollary is an

immediate consequence of Theorem 5 and Lemma 1.

The intuitive interpretation of the condition on the stochastic perturbation is the following:

In the critical case, when one component of the solution approaches zero, the stochastic

perturbation needs to vanish. Otherwise, the positivity of the solution cannot be guaranteed.

Acknowledgements. � We thank the anonymous referees for helpful comments and re-

marks that greatly improved the presentation of our results.
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